Octacalcium phosphate coating for 3D printed cranioplastic porous titanium implants
|
15.02.2020 |
Smirnov I.
Deev R.
Bozo I.
Fedotov A.
Gurin A.
Mamonov V.
Kravchuk A.
Popov V.
Egorov A.
Komlev V.
|
Surface and Coatings Technology |
10.1016/j.surfcoat.2019.125192 |
0 |
Ссылка
© 2019 Elsevier B.V. In the present study, porous three-dimensional (3D) printed titanium (Ti) implants of complex shape and predefined architecture were produced by selective laser sintering (SLS) technique. Electrochemical deposition combined with biomimetic approach was applied to low-temperature coating of these implants with metastable octacalcium phosphate (OCP) achieved via chemical transformation of dicalcium phosphate dehydrate (DCPD). X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and compressive strength analyses were applied to study the chemical composition, morphology and mechanical properties of the final OCP coating on the titanium surface. In vivo comparative study of the porous 3D printed Ti and OCP coated Ti implants has been performed using critical-size crania model, porous 3D printed Ti and coated implants were compared. A statistically significant difference in the newly formed bone thickness for OCP coated Ti implants was detected already at 6 weeks after implantation. Our results provide an experimental proof of a new concept of OCP coating for cranioplasty clinical applications.
Читать
тезис
|
Octacalcium phosphate coating for 3D printed cranioplastic porous titanium implants
|
15.02.2020 |
Smirnov I.
Deev R.
Bozo I.
Fedotov A.
Gurin A.
Mamonov V.
Kravchuk A.
Popov V.
Egorov A.
Komlev V.
|
Surface and Coatings Technology |
10.1016/j.surfcoat.2019.125192 |
0 |
Ссылка
© 2019 Elsevier B.V. In the present study, porous three-dimensional (3D) printed titanium (Ti) implants of complex shape and predefined architecture were produced by selective laser sintering (SLS) technique. Electrochemical deposition combined with biomimetic approach was applied to low-temperature coating of these implants with metastable octacalcium phosphate (OCP) achieved via chemical transformation of dicalcium phosphate dehydrate (DCPD). X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and compressive strength analyses were applied to study the chemical composition, morphology and mechanical properties of the final OCP coating on the titanium surface. In vivo comparative study of the porous 3D printed Ti and OCP coated Ti implants has been performed using critical-size crania model, porous 3D printed Ti and coated implants were compared. A statistically significant difference in the newly formed bone thickness for OCP coated Ti implants was detected already at 6 weeks after implantation. Our results provide an experimental proof of a new concept of OCP coating for cranioplasty clinical applications.
Читать
тезис
|
Octacalcium phosphate coating for 3D printed cranioplastic porous titanium implants
|
15.02.2020 |
Smirnov I.
Deev R.
Bozo I.
Fedotov A.
Gurin A.
Mamonov V.
Kravchuk A.
Popov V.
Egorov A.
Komlev V.
|
Surface and Coatings Technology |
10.1016/j.surfcoat.2019.125192 |
0 |
Ссылка
© 2019 Elsevier B.V. In the present study, porous three-dimensional (3D) printed titanium (Ti) implants of complex shape and predefined architecture were produced by selective laser sintering (SLS) technique. Electrochemical deposition combined with biomimetic approach was applied to low-temperature coating of these implants with metastable octacalcium phosphate (OCP) achieved via chemical transformation of dicalcium phosphate dehydrate (DCPD). X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and compressive strength analyses were applied to study the chemical composition, morphology and mechanical properties of the final OCP coating on the titanium surface. In vivo comparative study of the porous 3D printed Ti and OCP coated Ti implants has been performed using critical-size crania model, porous 3D printed Ti and coated implants were compared. A statistically significant difference in the newly formed bone thickness for OCP coated Ti implants was detected already at 6 weeks after implantation. Our results provide an experimental proof of a new concept of OCP coating for cranioplasty clinical applications.
Читать
тезис
|
Octacalcium phosphate coating for 3D printed cranioplastic porous titanium implants
|
15.02.2020 |
Smirnov I.
Deev R.
Bozo I.
Fedotov A.
Gurin A.
Mamonov V.
Kravchuk A.
Popov V.
Egorov A.
Komlev V.
|
Surface and Coatings Technology |
10.1016/j.surfcoat.2019.125192 |
0 |
Ссылка
© 2019 Elsevier B.V. In the present study, porous three-dimensional (3D) printed titanium (Ti) implants of complex shape and predefined architecture were produced by selective laser sintering (SLS) technique. Electrochemical deposition combined with biomimetic approach was applied to low-temperature coating of these implants with metastable octacalcium phosphate (OCP) achieved via chemical transformation of dicalcium phosphate dehydrate (DCPD). X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and compressive strength analyses were applied to study the chemical composition, morphology and mechanical properties of the final OCP coating on the titanium surface. In vivo comparative study of the porous 3D printed Ti and OCP coated Ti implants has been performed using critical-size crania model, porous 3D printed Ti and coated implants were compared. A statistically significant difference in the newly formed bone thickness for OCP coated Ti implants was detected already at 6 weeks after implantation. Our results provide an experimental proof of a new concept of OCP coating for cranioplasty clinical applications.
Читать
тезис
|
Octacalcium phosphate coating for 3D printed cranioplastic porous titanium implants
|
15.02.2020 |
Smirnov I.
Deev R.
Bozo I.
Fedotov A.
Gurin A.
Mamonov V.
Kravchuk A.
Popov V.
Egorov A.
Komlev V.
|
Surface and Coatings Technology |
10.1016/j.surfcoat.2019.125192 |
0 |
Ссылка
© 2019 Elsevier B.V. In the present study, porous three-dimensional (3D) printed titanium (Ti) implants of complex shape and predefined architecture were produced by selective laser sintering (SLS) technique. Electrochemical deposition combined with biomimetic approach was applied to low-temperature coating of these implants with metastable octacalcium phosphate (OCP) achieved via chemical transformation of dicalcium phosphate dehydrate (DCPD). X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and compressive strength analyses were applied to study the chemical composition, morphology and mechanical properties of the final OCP coating on the titanium surface. In vivo comparative study of the porous 3D printed Ti and OCP coated Ti implants has been performed using critical-size crania model, porous 3D printed Ti and coated implants were compared. A statistically significant difference in the newly formed bone thickness for OCP coated Ti implants was detected already at 6 weeks after implantation. Our results provide an experimental proof of a new concept of OCP coating for cranioplasty clinical applications.
Читать
тезис
|
Octacalcium phosphate coating for 3D printed cranioplastic porous titanium implants
|
15.02.2020 |
Smirnov I.
Deev R.
Bozo I.
Fedotov A.
Gurin A.
Mamonov V.
Kravchuk A.
Popov V.
Egorov A.
Komlev V.
|
Surface and Coatings Technology |
10.1016/j.surfcoat.2019.125192 |
0 |
Ссылка
© 2019 Elsevier B.V. In the present study, porous three-dimensional (3D) printed titanium (Ti) implants of complex shape and predefined architecture were produced by selective laser sintering (SLS) technique. Electrochemical deposition combined with biomimetic approach was applied to low-temperature coating of these implants with metastable octacalcium phosphate (OCP) achieved via chemical transformation of dicalcium phosphate dehydrate (DCPD). X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and compressive strength analyses were applied to study the chemical composition, morphology and mechanical properties of the final OCP coating on the titanium surface. In vivo comparative study of the porous 3D printed Ti and OCP coated Ti implants has been performed using critical-size crania model, porous 3D printed Ti and coated implants were compared. A statistically significant difference in the newly formed bone thickness for OCP coated Ti implants was detected already at 6 weeks after implantation. Our results provide an experimental proof of a new concept of OCP coating for cranioplasty clinical applications.
Читать
тезис
|
Octacalcium phosphate coating for 3D printed cranioplastic porous titanium implants
|
15.02.2020 |
Smirnov I.
Deev R.
Bozo I.
Fedotov A.
Gurin A.
Mamonov V.
Kravchuk A.
Popov V.
Egorov A.
Komlev V.
|
Surface and Coatings Technology |
10.1016/j.surfcoat.2019.125192 |
0 |
Ссылка
© 2019 Elsevier B.V. In the present study, porous three-dimensional (3D) printed titanium (Ti) implants of complex shape and predefined architecture were produced by selective laser sintering (SLS) technique. Electrochemical deposition combined with biomimetic approach was applied to low-temperature coating of these implants with metastable octacalcium phosphate (OCP) achieved via chemical transformation of dicalcium phosphate dehydrate (DCPD). X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and compressive strength analyses were applied to study the chemical composition, morphology and mechanical properties of the final OCP coating on the titanium surface. In vivo comparative study of the porous 3D printed Ti and OCP coated Ti implants has been performed using critical-size crania model, porous 3D printed Ti and coated implants were compared. A statistically significant difference in the newly formed bone thickness for OCP coated Ti implants was detected already at 6 weeks after implantation. Our results provide an experimental proof of a new concept of OCP coating for cranioplasty clinical applications.
Читать
тезис
|
LIFT-bioprinting, is it worth it?
|
01.09.2019 |
Antoshin A.
Churbanov S.
Minaev N.
Zhang D.
Zhang Y.
Shpichka A.
Timashev P.
|
Bioprinting |
10.1016/j.bprint.2019.e00052 |
2 |
Ссылка
© 2019 Elsevier B.V. To date, laser-induced forward transfer (LIFT) is one of the most developing areas in bioprinting. It is based on a precise nozzle-free laser-assisted hydrogel microdroplet transfer. Although this technique was first mentioned in the 1980s, it started to gain popularity in biomedicine only a decade ago. While the interest in LIFT bioprinting is constantly growing, it is essential to provide a framework of its possibilities and limitations. This review aims to facilitate the search for a common language between physicists and biologists and thus become a short guide to using LIFT technology for biomedicine. Here, we compared various points such as lasers, bioinks components, collector substrate, post-treatment, and printing processes that are crucial for LIFT bioprinting and applied in published studies on it. The core of this review is the discussion of biological and physical aspects to fabricate tissues and organs and the not-known difficulties that can be encountered during the laser printing process and were not given sufficient attention earlier.
Читать
тезис
|
Laser microsurgery of cell spheroids: An effective tool for regeneration studying and novel test system in aesthetic medicine
|
13.08.2018 |
Kosheleva N.
Ilina I.
Zurina I.
Gorkun A.
Sitnikov D.
Saburina I.
|
Proceedings - International Conference Laser Optics 2018, ICLO 2018 |
|
0 |
Ссылка
© 2018 IEEE. Technique of laser microsurgery of cell spheroids with nanosecond laser pulses was used to develop a new simple reproducible model for studying regeneration in vitro. Wound restoration accompanying the reparative processes occurred gradually over seven days due to rearrangement of surviving non-proliferating cells. Skin anti-ageing drugs can be tested on the developed model of cell spheroid's regeneration.
Читать
тезис
|
Surface-selective laser sintering as a method for mechanically inductive scaffolds with a multilayer bio-interface
|
13.08.2018 |
Grinchenko V.
Grebenik E.
Churbanov S.
Minaev N.
Melnikov P.
Schpichka A.
Butnaru D.
Bagratashvili V.
Rochev Y.
Timashev P.
|
Proceedings - International Conference Laser Optics 2018, ICLO 2018 |
|
0 |
Ссылка
© 2018 IEEE. Shown the efficiency of the LAS method in creating mechanically induced scaffolds with a multilayer biointerface.
Читать
тезис
|
Osteoinducing scaffolds with multi-layered biointerface
|
06.06.2018 |
Grebenik E.
Grinchenko V.
Churbanov S.
Minaev N.
Shavkuta B.
Melnikov P.
Butnaru D.
Rochev Y.
Bagratashvili V.
Timashev P.
|
Biomedical Materials (Bristol) |
|
4 |
Ссылка
© 2018 IOP Publishing Ltd. This study was aimed to design and characterise hybrid tissue-engineered constructs composed of osteoinducing polylactide-based scaffolds with multi-layered cellular biointerface for bone tissue reconstruction. Three-dimensional scaffolds with improved hydrophilic and osteoinducing properties were produced using the surface-selective laser sintering (SSLS) method. The designed scaffold pattern had dimensions of 8 ×8 ×2.5 mm and ladder-like pores (∼700 μm in width). Hyaluronic acid-coated polylactide microparticles (∼100 μm in diameter) were used as building blocks and water was used as the photosensitizer for SSLS followed by photocross-linking with Irgacure 2959 photoinitiator. Resulting scaffolds provided successful adhesion and expansion of human bone marrow mesenchymal stromal cells from a single-cell suspension. Induced calcium deposition by the cells associated with osteogenic differentiation was detected in 7-21 days of culturing in basal medium. The values were up to 60% higher on scaffolds produced at a higher prototyping speed under the experimental conditions. Innovative approach to graft the scaffolds with multi-layered cell sheets was proposed aiming to facilitate host tissue-implant integration. The sheets of murine MS-5 stromal cell line exhibited contiguous morphology and high viability in a modelled construct. Thus, the SSLS method proved to be effective in designing osteoinducing scaffolds suitable for the delivery of cell sheets.
Читать
тезис
|
Anatomical and functional features of corneal nerve fibers and methods of their evaluation
|
01.01.2018 |
Avetisov S.
Chernenkova N.
Surnina Z.
|
Vestnik Oftalmologii |
|
0 |
Ссылка
© 2018, Media Sfera. All rights reserved. Condition of the ocular surface greatly depends on functional integrity of corneal nerve fibers. Improving the methods used to study corneal nerve fibers allows their condition to be timely evaluated and adequately interpreted. The article reviews the structure, function, chemical composition of corneal nerve fibers, specifics of their innervation, as well as application of modern methods of their evaluation in diagnostics of various pathological conditions.
Читать
тезис
|
Modern methods of evaluating the morphological and functional state of the eyelids in chronic blepharitis
|
01.01.2018 |
Safonova T.
At'kova E.
Kintyukhina N.
Reznikova L.
|
Vestnik oftalmologii |
|
0 |
Ссылка
The article reviews the literature on methods of evaluating the morphological and functional state of the eyelids in chronic blepharitis. Development of methods continues together with further research on the etiology and pathogenesis of the disease.
Читать
тезис
|
Comparison of different types of cutting devices in surgery (review)
|
01.01.2018 |
Stupin V.
Manturova N.
Donskikh A.
Silina E.
|
International Journal of Engineering and Technology(UAE) |
|
0 |
Ссылка
© 2018 Authors. The present work presents a description of various cutting devices with an emphasis on skin surgery for the optimal choice of instruments in plastic surgery. Physical principles of work with a description of the biological role of an ultrasonic scalpel, various laser cutting devices, electrosurgical instruments, including radiofrequency electrosurgery, are described. Studies of recent years, including systematic reviews and meta-analyzes, are devoted to comparative analysis of various cutting and coagulating devices among themselves and in comparison with the mechanical metal scalpel.
Читать
тезис
|
The technology of laser fabrication of cell 3D scaffolds based on proteins and carbon nanoparticles
|
01.01.2018 |
Gerasimenko A.
Zhurbina N.
Kurilova U.
Polokhin A.
Ryabkin D.
Savelyev M.
Suetina I.
Mezentseva M.
Ichkitidze L.
Ignatov D.
Garcia-Ramirez M.
Guzman Gonzalez J.
Podgaetsky V.
|
Proceedings of SPIE - The International Society for Optical Engineering |
|
0 |
Ссылка
© 2018 SPIE. The technology of cell 3D scaffolds laser fabrication is developed. 3D scaffolds are designed to repair osteochondral defects, which are poorly restored during the organism's life. The technology involves the use of an installation, the laser beam of which moves along a liquid nanomaterial and evaporates it layer by layer. Liquid nanomaterial consists of the water-protein (collagen, albumin) suspension with carbon nanoparticles (single-walled carbon nanotubes). During laser irradiation, the temperature in the region of nanotubes defects increases and nanotubes are combined into the scaffold. The main component of installation is a continuous laser operating at wavelengh of 810 nm. The laser beam moves along 3 coordinates, which makes it possible to obtain samples of the required geometric shape. The internal and surface structure of the samples at the micro- A nd nanoscale levels were studied using the X-ray microtomography and scanning electron microscopy. In vitro studies of cell growth during 48 and 72 hours demonstrated the ability of cell 3D scaffolds to support the proliferation of osteoblasts and chondroblasts. Using fluorescence and atomic force microscopy, it was found that the growth and development of cells on a sample with a larger concentration of nanotubes occurred faster compared to samples with a smaller concentration of nanotubes.
Читать
тезис
|
Low-invasive reconstruction of spine discs under thermo-mechanical effect of fiber laser
|
01.01.2018 |
Sobol E.
Baskov A.
Borshchenko I.
Shekhter A.
|
Progress in Biomedical Optics and Imaging - Proceedings of SPIE |
|
0 |
Ссылка
© COPYRIGHT SPIE. The paper considers physical processes and mechanisms of laser reparation of spine cartilage, presents results of investigations aimed to optimize laser settings and to develop feedback control system for laser reconstruction of spine discs. Possible mechanisms of laser-induced regeneration include: (1) Space and temporary modulated laser beam induces non-homogeneous and pulse repetitive thermal expansion and stress in the irradiated zone of cartilage. Mechanical effect due to controllable thermal expansion of the tissue and micro and nano gas bubbles formation in the course of the moderate (up to 50 °C) heating of the NP activate biological cells (chondrocytes) and promote cartilage regeneration. (2) Non-destructive laser radiation leads to the formation of nano and micro-pores in cartilage matrix in the in the immediate vicinity of chondrocytes. That promotes water permeability and increases the feeding of biological cells. Results provide the scientific and engineering basis for the novel low-invasive laser procedures to be used in neurosurgery and orthopedics for the treatment cartilages of spine. The technology and equipment for laser reconstruction of spine discs have been tested first on animals, and then in a clinical trial. Since 2001 the laser reconstruction of intervertebral discs have been performed (i) for more than 3,200 patients with chronic symptoms of low back or neck pain who failed to improve with non-operative care; and (ii) for 1100 patients underwent hernia removal surgery. Substantial relief of back pain was obtained in 92.5% of patients treated who returned to their daily activities. LRD allowed also to decrease secondary surgeries more than three times. Optical fiber technique based on light scattering measurements have been used to promote safety and efficacy of the laser procedures.
Читать
тезис
|