Tribbles homolog 2 (Trib2), a pseudo serine/threonine kinase in tumorigenesis and stem cell fate decisions
|
01.12.2021 |
Fang Y.
Zekiy A.O.
Ghaedrahmati F.
Timoshin A.
Farzaneh M.
Anbiyaiee A.
Khoshnam S.E.
|
Cell Communication and Signaling |
10.1186/s12964-021-00725-y |
0 |
Ссылка
The family of Tribbles proteins play many critical nonenzymatic roles and regulate a wide range of key signaling pathways. Tribbles homolog 2 (Trib2) is a pseudo serine/threonine kinase that functions as a scaffold or adaptor in various physiological and pathological processes. Trib2 can interact with E3 ubiquitin ligases and control protein stability of downstream effectors. This protein is induced by mitogens and enhances the propagation of several cancer cells, including myeloid leukemia, liver, lung, skin, bone, brain, and pancreatic. Thus, Trib2 can be a predictive and valuable biomarker for the diagnosis and treatment of cancer. Recent studies have illustrated that Trib2 plays a major role in cell fate determination of stem cells. Stem cells have the capacity to self-renew and differentiate into specific cell types. Stem cells are important sources for cell-based regenerative medicine and drug screening. Trib2 has been found to increase the self-renewal ability of embryonic stem cells, the reprogramming efficiency of somatic cells, and chondrogenesis. In this review, we will focus on the recent advances of Trib2 function in tumorigenesis and stem cell fate decisions. [MediaObject not available: see fulltext.]
Читать
тезис
|
Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; overview of development, challenges, and opportunities
|
01.12.2021 |
Hassanzadeh A.
Rahman H.S.
Markov A.
Endjun J.J.
Zekiy A.O.
Chartrand M.S.
Beheshtkhoo N.
Kouhbanani M.A.J.
Marofi F.
Nikoo M.
Jarahian M.
|
Stem Cell Research and Therapy |
10.1186/s13287-021-02378-7 |
0 |
Ссылка
Recently, mesenchymal stem/stromal cells (MSCs) and their widespread biomedical applications have attracted great consideration from the scientific community around the world. However, reports have shown that the main populations of the transplanted MSCs are trapped in the liver, spleen, and lung upon administration, highlighting the importance of the development of cell-free therapies. Concerning rising evidence suggesting that the beneficial effects of MSC therapy are closely linked to MSC-released components, predominantly MSC-derived exosomes, the development of an MSC-based cell-free approach is of paramount importance. The exosomes are nano-sized (30–100 nm) lipid bilayer membrane vesicles, which are typically released by MSCs and are found in different body fluids. They include various bioactive molecules, such as messenger RNA (mRNA), microRNAs, proteins, and bioactive lipids, thus showing pronounced therapeutic competence for tissues recovery through the maintenance of their endogenous stem cells, the enhancement of regenerative phenotypic traits, inhibition of apoptosis concomitant with immune modulation, and stimulation of the angiogenesis. Conversely, the specific roles of MSC exosomes in the treatment of various tumors remain challenging. The development and clinical application of novel MSC-based cell-free strategies can be supported by better understanding their mechanisms, classifying the subpopulation of exosomes, enhancing the conditions of cell culture and isolation, and increasing the production of exosomes along with engineering exosomes to deliver drugs and therapeutic molecules to the target sites. In the current review, we deliver a brief overview of MSC-derived exosome biogenesis, composition, and isolation methods and discuss recent investigation regarding the therapeutic potential of MSC exosomes in regenerative medicine accompanied by their double-edged sword role in cancer.
Читать
тезис
|
A paradigm shift in cell-free approach: the emerging role of MSCs-derived exosomes in regenerative medicine
|
01.12.2021 |
Moghadasi S.
Elveny M.
Rahman H.S.
Suksatan W.
Jalil A.T.
Abdelbasset W.K.
Yumashev A.V.
Shariatzadeh S.
Motavalli R.
Behzad F.
Marofi F.
Hassanzadeh A.
Pathak Y.
Jarahian M.
|
Journal of Translational Medicine |
10.1186/s12967-021-02980-6 |
0 |
Ссылка
Recently, mesenchymal stem/stromal cells (MSCs) due to their pro-angiogenic, anti-apoptotic, and immunoregulatory competencies along with fewer ethical issues are presented as a rational strategy for regenerative medicine. Current reports have signified that the pleiotropic effects of MSCs are not related to their differentiation potentials, but rather are exerted through the release of soluble paracrine molecules. Being nano-sized, non-toxic, biocompatible, barely immunogenic, and owning targeting capability and organotropism, exosomes are considered nanocarriers for their possible use in diagnosis and therapy. Exosomes convey functional molecules such as long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs), proteins (e.g., chemokine and cytokine), and lipids from MSCs to the target cells. They participate in intercellular interaction procedures and enable the repair of damaged or diseased tissues and organs. Findings have evidenced that exosomes alone are liable for the beneficial influences of MSCs in a myriad of experimental models, suggesting that MSC- exosomes can be utilized to establish a novel cell-free therapeutic strategy for the treatment of varied human disorders, encompassing myocardial infarction (MI), CNS-related disorders, musculoskeletal disorders (e.g. arthritis), kidney diseases, liver diseases, lung diseases, as well as cutaneous wounds. Importantly, compared with MSCs, MSC- exosomes serve more steady entities and reduced safety risks concerning the injection of live cells, such as microvasculature occlusion risk. In the current review, we will discuss the therapeutic potential of MSC- exosomes as an innovative approach in the context of regenerative medicine and highlight the recent knowledge on MSC- exosomes in translational medicine, focusing on in vivo researches.
Читать
тезис
|
A paradigm shift in cell-free approach: the emerging role of MSCs-derived exosomes in regenerative medicine
|
01.12.2021 |
Moghadasi S.
Elveny M.
Rahman H.S.
Suksatan W.
Jalil A.T.
Abdelbasset W.K.
Yumashev A.V.
Shariatzadeh S.
Motavalli R.
Behzad F.
Marofi F.
Hassanzadeh A.
Pathak Y.
Jarahian M.
|
Journal of Translational Medicine |
10.1186/s12967-021-02980-6 |
0 |
Ссылка
Recently, mesenchymal stem/stromal cells (MSCs) due to their pro-angiogenic, anti-apoptotic, and immunoregulatory competencies along with fewer ethical issues are presented as a rational strategy for regenerative medicine. Current reports have signified that the pleiotropic effects of MSCs are not related to their differentiation potentials, but rather are exerted through the release of soluble paracrine molecules. Being nano-sized, non-toxic, biocompatible, barely immunogenic, and owning targeting capability and organotropism, exosomes are considered nanocarriers for their possible use in diagnosis and therapy. Exosomes convey functional molecules such as long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs), proteins (e.g., chemokine and cytokine), and lipids from MSCs to the target cells. They participate in intercellular interaction procedures and enable the repair of damaged or diseased tissues and organs. Findings have evidenced that exosomes alone are liable for the beneficial influences of MSCs in a myriad of experimental models, suggesting that MSC- exosomes can be utilized to establish a novel cell-free therapeutic strategy for the treatment of varied human disorders, encompassing myocardial infarction (MI), CNS-related disorders, musculoskeletal disorders (e.g. arthritis), kidney diseases, liver diseases, lung diseases, as well as cutaneous wounds. Importantly, compared with MSCs, MSC- exosomes serve more steady entities and reduced safety risks concerning the injection of live cells, such as microvasculature occlusion risk. In the current review, we will discuss the therapeutic potential of MSC- exosomes as an innovative approach in the context of regenerative medicine and highlight the recent knowledge on MSC- exosomes in translational medicine, focusing on in vivo researches.
Читать
тезис
|
Unsaturated and thiolated derivatives of polysaccharides as functional matrixes for tissue engineering and pharmacology: A review
|
01.05.2021 |
Farion I.A.
Burdukovskii V.F.
Kholkhoev B.C.
Timashev P.S.
|
Carbohydrate Polymers |
10.1016/j.carbpol.2021.117735 |
0 |
Ссылка
© 2021 Elsevier Ltd This review examines investigations into the functionalization of polysaccharides by substituents containing multiple (C[dbnd]C) bonds and thiol (SH) groups that are prone to (co)polymerization in the presence of thermal, redox and photoinitiators or Michael addition reactions. A comparative analysis of the approaches to grafting the mentioned substituents onto the polysaccharide macromolecules was conducted. The use of the modified polysaccharides for the design of the 3D structures, including for the development of the pore bearing matrixes of cells or scaffolds utilized in regenerative medicine was examined. These modified polymers were also examined toward the design of excipient matrixes in pharmacological compositions, including with controllable release of active pharmaceuticals, as wel as of antibacterial and antifungal agents and others. In addition, a few examples of the use of modified derivatives in other areas are given.
Читать
тезис
|
Extracellular matrix-based hydrogels obtained from human tissues: A work still in progress
|
01.10.2019 |
Gazia C.
Tamburrini R.
Asthana A.
Chaimov D.
Muir S.
Marino D.
Delbono L.
Villani V.
Perin L.
Di Nardo P.
Robertson J.
Orlando G.
|
Current Opinion in Organ Transplantation |
10.1097/MOT.0000000000000691 |
0 |
Ссылка
© 2019 Wolters Kluwer Health, Inc. Purpose of reviewThe current review summarizes contemporary decellularization and hydrogel manufacturing strategies in the field of tissue engineering and regenerative medicine.Recent findingsDecellularized extracellular matrix (ECM) bioscaffolds are a valuable biomaterial that can be purposed into various forms of synthetic tissues such as hydrogels. ECM-based hydrogels can be of animal or human origin. The use of human tissues as a source for ECM hydrogels in the clinical setting is still in its infancy and current literature is scant and anecdotal, resulting in inconclusive results.SummaryThus far the methods used to obtain hydrogels from human tissues remains a work in progress. Gelation, the most complex technique in obtaining hydrogels, is challenging due to remarkable heterogeneity of the tissues secondary to interindividual variability. Age, sex, ethnicity, and preexisting conditions are factors that dramatically undermine the technical feasibility of the gelation process. This is contrasted with animals whose well defined anatomical and histological characteristics have been selectively bred for the goal of manufacturing hydrogels.
Читать
тезис
|
LIFT-bioprinting, is it worth it?
|
01.09.2019 |
Antoshin A.
Churbanov S.
Minaev N.
Zhang D.
Zhang Y.
Shpichka A.
Timashev P.
|
Bioprinting |
10.1016/j.bprint.2019.e00052 |
2 |
Ссылка
© 2019 Elsevier B.V. To date, laser-induced forward transfer (LIFT) is one of the most developing areas in bioprinting. It is based on a precise nozzle-free laser-assisted hydrogel microdroplet transfer. Although this technique was first mentioned in the 1980s, it started to gain popularity in biomedicine only a decade ago. While the interest in LIFT bioprinting is constantly growing, it is essential to provide a framework of its possibilities and limitations. This review aims to facilitate the search for a common language between physicists and biologists and thus become a short guide to using LIFT technology for biomedicine. Here, we compared various points such as lasers, bioinks components, collector substrate, post-treatment, and printing processes that are crucial for LIFT bioprinting and applied in published studies on it. The core of this review is the discussion of biological and physical aspects to fabricate tissues and organs and the not-known difficulties that can be encountered during the laser printing process and were not given sufficient attention earlier.
Читать
тезис
|
About stem cell research in dentistry: Many doubts and too many pitfalls still affect the regenerative dentistry
|
20.10.2018 |
Tatullo M.
|
International Journal of Medical Sciences |
|
3 |
Ссылка
© Ivyspring International Publisher. Stem cells (SCs) research is one of the most promising approaches to regenerative medicine. Our understanding of SCs biology and their potential role in tissue repairing has notably increased during the last few years. Mesenchymal stem cells (MSCs) are present in almost all human tissues, including oral and dental tissues (dental-derived stem cells or DDSCs). Despite many doubts and too many pitfalls still affect regenerative dentistry; however, it represents an exciting challenge for the next generations of young dentists. Educating and training in regenerative medicine the new generation of researchers is of utmost importance, albeit often underestimated: regenerative dentistry represents a big opportunity for the next generations of researchers and clinicians, and this review report underlines that dental schools should pay more attention to teachings of strategic subjects, such as cell biology, molecular biology and tissue engineering.
Читать
тезис
|
Advanced laser technologies for regenerative medicine
|
13.08.2018 |
Timashev P.
Minaev N.
Bagratashvili V.
|
Proceedings - International Conference Laser Optics 2018, ICLO 2018 |
|
0 |
Ссылка
© 2018 IEEE. This presentation will discusses recent studies on two photon polymerization process and examples of its application in TE.
Читать
тезис
|
Repair of damaged articular cartilage: Current approaches and future directions
|
11.08.2018 |
Medvedeva E.
Grebenik E.
Gornostaeva S.
Telpuhov V.
Lychagin A.
Timashev P.
Chagin A.
|
International Journal of Molecular Sciences |
|
14 |
Ссылка
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. Articular hyaline cartilage is extensively hydrated, but it is neither innervated nor vascularized, and its low cell density allows only extremely limited self-renewal. Most clinical and research efforts currently focus on the restoration of cartilage damaged in connection with osteoarthritis or trauma. Here, we discuss current clinical approaches for repairing cartilage, as well as research approaches which are currently developing, and those under translation into clinical practice. We also describe potential future directions in this area, including tissue engineering based on scaffolding and/or stem cells as well as a combination of gene and cell therapy. Particular focus is placed on cell-based approaches and the potential of recently characterized chondro-progenitors; progress with induced pluripotent stem cells is also discussed. In this context, we also consider the ability of different types of stem cell to restore hyaline cartilage and the importance of mimicking the environment in vivo during cell expansion and differentiation into mature chondrocytes.
Читать
тезис
|
Long-term oucomes of tracheal transplantation: success and unsolved problems
|
01.01.2018 |
Parshin V.
Lyundup A.
Tarabrin E.
|
Khirurgiia |
|
0 |
Ссылка
AIM: To analyze long-term outcomes of tracheal transplantation. MATERIAL AND METHODS: There were 1128 patients with cicatricial tracheal stenosis who have been operated at the Petrovsky Russian Research Center for Surgery and the Sechenov First Moscow State Medical University for the period 1963-2015. RESULTS: Operations have become safer. Postoperative morbidity and mortality reduced from 41.4% (1963-1980) to 5.6% (2001-2015) and from 21.9% (1963-1980) to 0.5% (2001-2015), respectively. Tracheal transplantation was performed in 2 cases and fundamentally different tracheal structures were applied. Donor thyreotracheal complex with restored blood supply through thyroid vessels was used in the first case (2006). Perennial experimental trials preceded clinical application of this technique. In the second case (2010) we applied scientific results of foreign colleagues (cellular technologies and methods of regenerative medicine to create artificial trachea). Patients are still alive after 12 and 8 years, respectively. Restoration of blood supply of donor trachea is possible through thyroid collaterals. This technique is successful in long-term period. Tissue-engineered trachea cannot be considered true trachea due to no all tracheal components. However, such trachea provides air-conducting, evacuation and protective functions. Tracheomalacia requires further researches as one of the main problems of tracheal transplantation.
Читать
тезис
|
Bone marrow stem cells for the critical limb ischemia treatment: Biological aspects and clinical application
|
01.01.2018 |
Orekhov P.
Konoplyannikov M.
Baklaushev V.
Kalsin V.
Averyanov A.
Konopliannikov A.
Habazov R.
Troitskiy A.
|
Genes and Cells |
|
0 |
Ссылка
© 2018 Human Stem Cell Institute. All rights reserved. Cell therapy is one of the most promising directions in the treatment of critical limb ischemia (CLI). In spite of certain advances achieved in this field in the last decades, which are related to application of bone marrow stem cells (BMSC), a large number of problems still remain unsolved. In this review, we discuss the BMSC biology, mechanisms of their therapeutic effect in the CLI treatment and results of the most notable BMSC-based clinical studies in detail.
Читать
тезис
|
Mesenchymal stem cell therapy for ischemic heart disease: Advances and challenges
|
01.01.2018 |
Konoplyannikov M.
Kotova S.
Baklaushev V.
Konoplyannikov A.
Kalsin V.
Timashev P.
Troitskiy A.
|
Current Pharmaceutical Design |
|
3 |
Ссылка
© 2018 Bentham Science Publishers. Ischemic Heart Disease (IHD) has been recognized as the main cause of mortality in the modern world. Application of cell therapy technologies for the IHD treatment has been actively studied from the beginning of 2000s. The review is dedicated to the use of mesenchymal stem cells (MSC) in the therapy of IHD. The strategies of the MSC modification in vitro for improvement of their regenerative potential are extensively discussed, including preconditioning to enhance the cell survival, boosting their paracrine effect and manipulating their car-diomyogenic differentiation. The optimization of the MSC delivery and opportunities related to the use of biomaterials as cell carriers are also discussed. The results of the most important clinical studies on the MSC-based IHD therapy are presented, including those completed and published in the literature and the ongoing clinical trials registered at clinicaltrials.gov by June 2018.
Читать
тезис
|