Octacalcium phosphate coating for 3D printed cranioplastic porous titanium implants
|
15.02.2020 |
Smirnov I.
Deev R.
Bozo I.
Fedotov A.
Gurin A.
Mamonov V.
Kravchuk A.
Popov V.
Egorov A.
Komlev V.
|
Surface and Coatings Technology |
10.1016/j.surfcoat.2019.125192 |
0 |
Ссылка
© 2019 Elsevier B.V. In the present study, porous three-dimensional (3D) printed titanium (Ti) implants of complex shape and predefined architecture were produced by selective laser sintering (SLS) technique. Electrochemical deposition combined with biomimetic approach was applied to low-temperature coating of these implants with metastable octacalcium phosphate (OCP) achieved via chemical transformation of dicalcium phosphate dehydrate (DCPD). X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and compressive strength analyses were applied to study the chemical composition, morphology and mechanical properties of the final OCP coating on the titanium surface. In vivo comparative study of the porous 3D printed Ti and OCP coated Ti implants has been performed using critical-size crania model, porous 3D printed Ti and coated implants were compared. A statistically significant difference in the newly formed bone thickness for OCP coated Ti implants was detected already at 6 weeks after implantation. Our results provide an experimental proof of a new concept of OCP coating for cranioplasty clinical applications.
Читать
тезис
|
Octacalcium phosphate coating for 3D printed cranioplastic porous titanium implants
|
15.02.2020 |
Smirnov I.
Deev R.
Bozo I.
Fedotov A.
Gurin A.
Mamonov V.
Kravchuk A.
Popov V.
Egorov A.
Komlev V.
|
Surface and Coatings Technology |
10.1016/j.surfcoat.2019.125192 |
0 |
Ссылка
© 2019 Elsevier B.V. In the present study, porous three-dimensional (3D) printed titanium (Ti) implants of complex shape and predefined architecture were produced by selective laser sintering (SLS) technique. Electrochemical deposition combined with biomimetic approach was applied to low-temperature coating of these implants with metastable octacalcium phosphate (OCP) achieved via chemical transformation of dicalcium phosphate dehydrate (DCPD). X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and compressive strength analyses were applied to study the chemical composition, morphology and mechanical properties of the final OCP coating on the titanium surface. In vivo comparative study of the porous 3D printed Ti and OCP coated Ti implants has been performed using critical-size crania model, porous 3D printed Ti and coated implants were compared. A statistically significant difference in the newly formed bone thickness for OCP coated Ti implants was detected already at 6 weeks after implantation. Our results provide an experimental proof of a new concept of OCP coating for cranioplasty clinical applications.
Читать
тезис
|
Octacalcium phosphate coating for 3D printed cranioplastic porous titanium implants
|
15.02.2020 |
Smirnov I.
Deev R.
Bozo I.
Fedotov A.
Gurin A.
Mamonov V.
Kravchuk A.
Popov V.
Egorov A.
Komlev V.
|
Surface and Coatings Technology |
10.1016/j.surfcoat.2019.125192 |
0 |
Ссылка
© 2019 Elsevier B.V. In the present study, porous three-dimensional (3D) printed titanium (Ti) implants of complex shape and predefined architecture were produced by selective laser sintering (SLS) technique. Electrochemical deposition combined with biomimetic approach was applied to low-temperature coating of these implants with metastable octacalcium phosphate (OCP) achieved via chemical transformation of dicalcium phosphate dehydrate (DCPD). X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and compressive strength analyses were applied to study the chemical composition, morphology and mechanical properties of the final OCP coating on the titanium surface. In vivo comparative study of the porous 3D printed Ti and OCP coated Ti implants has been performed using critical-size crania model, porous 3D printed Ti and coated implants were compared. A statistically significant difference in the newly formed bone thickness for OCP coated Ti implants was detected already at 6 weeks after implantation. Our results provide an experimental proof of a new concept of OCP coating for cranioplasty clinical applications.
Читать
тезис
|
Octacalcium phosphate coating for 3D printed cranioplastic porous titanium implants
|
15.02.2020 |
Smirnov I.
Deev R.
Bozo I.
Fedotov A.
Gurin A.
Mamonov V.
Kravchuk A.
Popov V.
Egorov A.
Komlev V.
|
Surface and Coatings Technology |
10.1016/j.surfcoat.2019.125192 |
0 |
Ссылка
© 2019 Elsevier B.V. In the present study, porous three-dimensional (3D) printed titanium (Ti) implants of complex shape and predefined architecture were produced by selective laser sintering (SLS) technique. Electrochemical deposition combined with biomimetic approach was applied to low-temperature coating of these implants with metastable octacalcium phosphate (OCP) achieved via chemical transformation of dicalcium phosphate dehydrate (DCPD). X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and compressive strength analyses were applied to study the chemical composition, morphology and mechanical properties of the final OCP coating on the titanium surface. In vivo comparative study of the porous 3D printed Ti and OCP coated Ti implants has been performed using critical-size crania model, porous 3D printed Ti and coated implants were compared. A statistically significant difference in the newly formed bone thickness for OCP coated Ti implants was detected already at 6 weeks after implantation. Our results provide an experimental proof of a new concept of OCP coating for cranioplasty clinical applications.
Читать
тезис
|
Octacalcium phosphate coating for 3D printed cranioplastic porous titanium implants
|
15.02.2020 |
Smirnov I.
Deev R.
Bozo I.
Fedotov A.
Gurin A.
Mamonov V.
Kravchuk A.
Popov V.
Egorov A.
Komlev V.
|
Surface and Coatings Technology |
10.1016/j.surfcoat.2019.125192 |
0 |
Ссылка
© 2019 Elsevier B.V. In the present study, porous three-dimensional (3D) printed titanium (Ti) implants of complex shape and predefined architecture were produced by selective laser sintering (SLS) technique. Electrochemical deposition combined with biomimetic approach was applied to low-temperature coating of these implants with metastable octacalcium phosphate (OCP) achieved via chemical transformation of dicalcium phosphate dehydrate (DCPD). X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and compressive strength analyses were applied to study the chemical composition, morphology and mechanical properties of the final OCP coating on the titanium surface. In vivo comparative study of the porous 3D printed Ti and OCP coated Ti implants has been performed using critical-size crania model, porous 3D printed Ti and coated implants were compared. A statistically significant difference in the newly formed bone thickness for OCP coated Ti implants was detected already at 6 weeks after implantation. Our results provide an experimental proof of a new concept of OCP coating for cranioplasty clinical applications.
Читать
тезис
|
Octacalcium phosphate coating for 3D printed cranioplastic porous titanium implants
|
15.02.2020 |
Smirnov I.
Deev R.
Bozo I.
Fedotov A.
Gurin A.
Mamonov V.
Kravchuk A.
Popov V.
Egorov A.
Komlev V.
|
Surface and Coatings Technology |
10.1016/j.surfcoat.2019.125192 |
0 |
Ссылка
© 2019 Elsevier B.V. In the present study, porous three-dimensional (3D) printed titanium (Ti) implants of complex shape and predefined architecture were produced by selective laser sintering (SLS) technique. Electrochemical deposition combined with biomimetic approach was applied to low-temperature coating of these implants with metastable octacalcium phosphate (OCP) achieved via chemical transformation of dicalcium phosphate dehydrate (DCPD). X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and compressive strength analyses were applied to study the chemical composition, morphology and mechanical properties of the final OCP coating on the titanium surface. In vivo comparative study of the porous 3D printed Ti and OCP coated Ti implants has been performed using critical-size crania model, porous 3D printed Ti and coated implants were compared. A statistically significant difference in the newly formed bone thickness for OCP coated Ti implants was detected already at 6 weeks after implantation. Our results provide an experimental proof of a new concept of OCP coating for cranioplasty clinical applications.
Читать
тезис
|
Octacalcium phosphate coating for 3D printed cranioplastic porous titanium implants
|
15.02.2020 |
Smirnov I.
Deev R.
Bozo I.
Fedotov A.
Gurin A.
Mamonov V.
Kravchuk A.
Popov V.
Egorov A.
Komlev V.
|
Surface and Coatings Technology |
10.1016/j.surfcoat.2019.125192 |
0 |
Ссылка
© 2019 Elsevier B.V. In the present study, porous three-dimensional (3D) printed titanium (Ti) implants of complex shape and predefined architecture were produced by selective laser sintering (SLS) technique. Electrochemical deposition combined with biomimetic approach was applied to low-temperature coating of these implants with metastable octacalcium phosphate (OCP) achieved via chemical transformation of dicalcium phosphate dehydrate (DCPD). X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and compressive strength analyses were applied to study the chemical composition, morphology and mechanical properties of the final OCP coating on the titanium surface. In vivo comparative study of the porous 3D printed Ti and OCP coated Ti implants has been performed using critical-size crania model, porous 3D printed Ti and coated implants were compared. A statistically significant difference in the newly formed bone thickness for OCP coated Ti implants was detected already at 6 weeks after implantation. Our results provide an experimental proof of a new concept of OCP coating for cranioplasty clinical applications.
Читать
тезис
|
Surface-selective laser sintering as a method for mechanically inductive scaffolds with a multilayer bio-interface
|
13.08.2018 |
Grinchenko V.
Grebenik E.
Churbanov S.
Minaev N.
Melnikov P.
Schpichka A.
Butnaru D.
Bagratashvili V.
Rochev Y.
Timashev P.
|
Proceedings - International Conference Laser Optics 2018, ICLO 2018 |
|
0 |
Ссылка
© 2018 IEEE. Shown the efficiency of the LAS method in creating mechanically induced scaffolds with a multilayer biointerface.
Читать
тезис
|
Osteoinducing scaffolds with multi-layered biointerface
|
06.06.2018 |
Grebenik E.
Grinchenko V.
Churbanov S.
Minaev N.
Shavkuta B.
Melnikov P.
Butnaru D.
Rochev Y.
Bagratashvili V.
Timashev P.
|
Biomedical Materials (Bristol) |
|
4 |
Ссылка
© 2018 IOP Publishing Ltd. This study was aimed to design and characterise hybrid tissue-engineered constructs composed of osteoinducing polylactide-based scaffolds with multi-layered cellular biointerface for bone tissue reconstruction. Three-dimensional scaffolds with improved hydrophilic and osteoinducing properties were produced using the surface-selective laser sintering (SSLS) method. The designed scaffold pattern had dimensions of 8 ×8 ×2.5 mm and ladder-like pores (∼700 μm in width). Hyaluronic acid-coated polylactide microparticles (∼100 μm in diameter) were used as building blocks and water was used as the photosensitizer for SSLS followed by photocross-linking with Irgacure 2959 photoinitiator. Resulting scaffolds provided successful adhesion and expansion of human bone marrow mesenchymal stromal cells from a single-cell suspension. Induced calcium deposition by the cells associated with osteogenic differentiation was detected in 7-21 days of culturing in basal medium. The values were up to 60% higher on scaffolds produced at a higher prototyping speed under the experimental conditions. Innovative approach to graft the scaffolds with multi-layered cell sheets was proposed aiming to facilitate host tissue-implant integration. The sheets of murine MS-5 stromal cell line exhibited contiguous morphology and high viability in a modelled construct. Thus, the SSLS method proved to be effective in designing osteoinducing scaffolds suitable for the delivery of cell sheets.
Читать
тезис
|