Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids
|
01.11.2018 |
Smolyanskaya O.
Chernomyrdin N.
Konovko A.
Zaytsev K.
Ozheredov I.
Cherkasova O.
Nazarov M.
Guillet J.
Kozlov S.
Kistenev Y.
Coutaz J.
Mounaix P.
Vaks V.
Son J.
Cheon H.
Wallace V.
Feldman Y.
Popov I.
Yaroslavsky A.
Shkurinov A.
Tuchin V.
|
Progress in Quantum Electronics |
|
25 |
Ссылка
© 2018 Elsevier Ltd In this review, we describe dielectric properties of biological tissues and liquids in the context of terahertz (THz) biophotonics. We discuss a model of the THz dielectric permittivity of water and water-containing media, which yields analysis of the relaxation and damped resonant molecules modes. We briefly describe modern techniques of THz spectroscopy and imaging employed in biophotonics with a strong emphasize on a THz time-domain spectroscopy. Furthermore, we consider the methods of sub-wavelength resolution THz imaging and the problem of THz wave delivery to hard to access tissues and internal organs. We consider the THz dielectric properties of biological solutions and liquids. Although strong absorption by water molecules prevents THz-waves from penetration of hydrated tissues and probing biological molecules in aqueous solutions, we discuss approaches for overcoming these drawbacks – novel techniques of freezing and temporal dehydration by application of hyperosmotic agents which have a potential for cancer detection. We review recent applications of THz technology in diagnosis of malignancies and aiding histology paying particular attention to the origin of contrast observed between healthy and pathological tissues. We consider recent applications of THz reflectometry in sensing the thinning dynamics of human pre-corneal tear film. Modern modalities of THz imaging, which relies on the concepts of multi-spectral and multi-temporal domains and employing the principles of color vision, phase analysis and tomography are discussed. Novel methods of THz spectra analysis based on machine learning, pattern recognition, chemical imaging and the revealing of the spatial distribution of various substances in a tissue, are analyzed. Advanced thermal model describing biological object irradiated by THz waves and phantoms mimicking the optical properties of tissues at THz frequencies are presented. Finally, application of the high-resolution THz spectroscopy in analytic chemistry, biology and medicine are described.
Читать
тезис
|
Terahertz continuous-wave solid immersion imaging with spatial resolution beyond the Abbe limit
|
13.08.2018 |
Chernomyrdin N.
Kucheryavenko A.
Kolontaeva G.
Komandin G.
Shchedrina M.
Spektor I.
Reshetov I.
Zaytsev K.
|
Proceedings - International Conference Laser Optics 2018, ICLO 2018 |
|
0 |
Ссылка
© 2018 IEEE. We have proposed an approach to improve the resolution of terahertz (THz) imaging using the effect of solid immersion - i.e. a reduction in the dimensions of the electromagnetic beam caustic by its formation in a free space, behind the medium possessing high refractive index. We have designed a THz solid immersion lens (SIL) comprised of a polymer wide-aperture aspherical singlet and a crystalline truncated sphere mounted in front of the image plane. We have proposed an approach for the object handling at the focal plane of the THz SIL. We have combined numerical simulations and experimental studies to demonstrate the advanced 0.2λ spatial resolution of the proposed THz SIL - it is beyond the 0.5λ Abbe limit. Finally, we have assembled the continuous-wave THz SIL imaging system and applied it for studying various objects with sub-wavelength variations of structure and dielectric properties.
Читать
тезис
|
In vitro terahertz spectroscopy of malignant brain gliomas embedded in gelatin slab
|
13.08.2018 |
Chernomyrdin N.
Malakhov K.
Beshplav S.
Gavdush A.
Komandin G.
Spector I.
Karasik V.
Yurchenko S.
Dolganova I.
Goryaynov S.
Reshetov I.
Potapov A.
Tuchin V.
Zaytsev K.
|
Proceedings - International Conference Laser Optics 2018, ICLO 2018 |
|
0 |
Ссылка
© 2018 IEEE. In our work, we have performed in vitro terahertz (THz) measurements of gelatin-embedded malignant human brain gliomas using the THz pulsed spectroscopy. The gelatin embedding yields sustain the THz response of tissues close to that of the freshly-excised ones for a long time after the resection. We have observed significant differences between the THz responses of normal and pathological tissues of the brain, which highlights a potential of the THz technology in label-free intraoperative neurodiagnosis of tumors.
Читать
тезис
|
Sub-wavelength-resolution imaging of biological tissues using THz solid immersion microscopy
|
13.08.2018 |
Chernomyrdin N.
Kucheryavenko A.
Kolontaeva G.
Schadko A.
Beshplav S.
Malakhov K.
Komandin G.
Karasik V.
Spector I.
Tuchin V.
Zaytsev K.
|
Proceedings - International Conference Laser Optics 2018, ICLO 2018 |
|
0 |
Ссылка
© 2018 IEEE. We have proposed a method of THz solid immersion microscopy, which yields imaging soft biological tissues with the sub-wavelength resolution up to 0.2-wavelengths. To achieve this advanced resolution, it employs a solid immersion phenomenon - i.e. a reduction in the dimensions of the THz beam caustic by its formation on a small distance behind the medium featuring high refractive index. We have assembled an experimental setup, which realizes the principles of the THz solid immersion microscopy, and proposed an approach for handling the soft tissue at the object plane. This setup uses a backward-wave oscillator, as a source of continuous-wave THz radiation, and a Golay cell, as a detector of the THz field intensity. We have examined the resolution of the THz solid immersion microscopy using both numerical simulations and experimental studies. Finally, in order to highlight the prospective of the proposed THz imaging modality, we have applied the experimental setup for imaging of representative examples of biological tissues.
Читать
тезис
|
In vitro terahertz dielectric spectroscopy of human brain tumors
|
13.08.2018 |
Zaytsev K.
Chernomyrdin N.
Malakhov K.
Beshplav S.
Goryaynov S.
Kurlov V.
Reshetov I.
Potapov A.
Tuchin V.
|
Proceedings - International Conference Laser Optics 2018, ICLO 2018 |
|
0 |
Ссылка
© 2018 IEEE. Modern progress in terahertz (THz) diagnostics of malignancies, including non-invasive, least-invasive and intraoperative techniques is briefly discussed. Special attention is paid to intraoperative diagnosis of brain tumors, which is a rapidly developing field nowadays. We discuss our recent results in this research field, which are associated with (i) in vitro studies the THz dielectric response of gelatin-embedded human brain tumors (including gliomas and meningiomas featuring different grades), (ii) analysis an ability for differentiation between normal and pathological tissues of the brain relying on the methods of THz spectroscopy and imaging, and, finally, (iii) development of novel THz instrumentation for the intraoperative detection of margins of tumors in order to guarantee its gross total resection.
Читать
тезис
|
Terahertz emission from InGaAs with increased indium content
|
01.01.2018 |
Yachmenev A.
Khabibullin R.
Ilyakov I.
Glinskiy I.
Kucheryavenko A.
Shishkin B.
Akhmedzhanov R.
Zaytsev K.
Ponomarev D.
|
Proceedings of SPIE - The International Society for Optical Engineering |
|
0 |
Ссылка
© 2018 SPIE. We have investigated the influence of indium content (x) increase on spectral characteristics of In x Ga 1-x As photoconductor. To avoid the mismatch between crystalline parameters of In x Ga 1-x As and GaAs wafer we proposed to incorporate a step-graded metamorphic buffer layer. We showed that x increase strongly enhances THz emission and broadens THz spectrum of In x Ga 1-x As. Since no polarity rehearsal of the THz waveform occurs and electron diffusion mobility increases up to 90% with x increase we attribute the increase of THz intensity to photo-Dember effect contribution. The maximum efficiency of optical-to-THz conversion was obtained for In 0.72 Ga 0.28 As at optical fluence ∼0.01 μJ=cm 2 . The fabricated photoconductors can be used as promising photo-Dember or lateral photo-Dember THz emitters in pulsed THz spectroscopy and imaging, in particular, operating with long wave optical pump.
Читать
тезис
|