Mesenchymal stem cells and cancer therapy: insights into targeting the tumour vasculature
|
01.12.2021 |
Aravindhan S.
Ejam S.S.
Lafta M.H.
Markov A.
Yumashev A.V.
Ahmadi M.
|
Cancer Cell International |
10.1186/s12935-021-01836-9 |
0 |
Ссылка
© 2021, The Author(s). A crosstalk established between tumor microenvironment and tumor cells leads to contribution or inhibition of tumor progression. Mesenchymal stem cells (MSCs) are critical cells that fundamentally participate in modulation of the tumor microenvironment, and have been reported to be able to regulate and determine the final destination of tumor cell. Conflicting functions have been attributed to the activity of MSCs in the tumor microenvironment; they can confer a tumorigenic or anti-tumor potential to the tumor cells. Nonetheless, MSCs have been associated with a potential to modulate the tumor microenvironment in favouring the suppression of cancer cells, and promising results have been reported from the preclinical as well as clinical studies. Among the favourable behaviours of MSCs, are releasing mediators (like exosomes) and their natural migrative potential to tumor sites, allowing efficient drug delivering and, thereby, efficient targeting of migrating tumor cells. Additionally, angiogenesis of tumor tissue has been characterized as a key feature of tumors for growth and metastasis. Upon introduction of first anti-angiogenic therapy by a monoclonal antibody, attentions have been drawn toward manipulation of angiogenesis as an attractive strategy for cancer therapy. After that, a wide effort has been put on improving the approaches for cancer therapy through interfering with tumor angiogenesis. In this article, we attempted to have an overview on recent findings with respect to promising potential of MSCs in cancer therapy and had emphasis on the implementing MSCs to improve them against the suppression of angiogenesis in tumor tissue, hence, impeding the tumor progression.
Читать
тезис
|
Mesenchymal stem cells and cancer therapy: insights into targeting the tumour vasculature
|
01.12.2021 |
Aravindhan S.
Ejam S.S.
Lafta M.H.
Markov A.
Yumashev A.V.
Ahmadi M.
|
Cancer Cell International |
10.1186/s12935-021-01836-9 |
0 |
Ссылка
© 2021, The Author(s). A crosstalk established between tumor microenvironment and tumor cells leads to contribution or inhibition of tumor progression. Mesenchymal stem cells (MSCs) are critical cells that fundamentally participate in modulation of the tumor microenvironment, and have been reported to be able to regulate and determine the final destination of tumor cell. Conflicting functions have been attributed to the activity of MSCs in the tumor microenvironment; they can confer a tumorigenic or anti-tumor potential to the tumor cells. Nonetheless, MSCs have been associated with a potential to modulate the tumor microenvironment in favouring the suppression of cancer cells, and promising results have been reported from the preclinical as well as clinical studies. Among the favourable behaviours of MSCs, are releasing mediators (like exosomes) and their natural migrative potential to tumor sites, allowing efficient drug delivering and, thereby, efficient targeting of migrating tumor cells. Additionally, angiogenesis of tumor tissue has been characterized as a key feature of tumors for growth and metastasis. Upon introduction of first anti-angiogenic therapy by a monoclonal antibody, attentions have been drawn toward manipulation of angiogenesis as an attractive strategy for cancer therapy. After that, a wide effort has been put on improving the approaches for cancer therapy through interfering with tumor angiogenesis. In this article, we attempted to have an overview on recent findings with respect to promising potential of MSCs in cancer therapy and had emphasis on the implementing MSCs to improve them against the suppression of angiogenesis in tumor tissue, hence, impeding the tumor progression.
Читать
тезис
|
Tribbles homolog 2 (Trib2), a pseudo serine/threonine kinase in tumorigenesis and stem cell fate decisions
|
01.12.2021 |
Fang Y.
Zekiy A.O.
Ghaedrahmati F.
Timoshin A.
Farzaneh M.
Anbiyaiee A.
Khoshnam S.E.
|
Cell Communication and Signaling |
10.1186/s12964-021-00725-y |
0 |
Ссылка
The family of Tribbles proteins play many critical nonenzymatic roles and regulate a wide range of key signaling pathways. Tribbles homolog 2 (Trib2) is a pseudo serine/threonine kinase that functions as a scaffold or adaptor in various physiological and pathological processes. Trib2 can interact with E3 ubiquitin ligases and control protein stability of downstream effectors. This protein is induced by mitogens and enhances the propagation of several cancer cells, including myeloid leukemia, liver, lung, skin, bone, brain, and pancreatic. Thus, Trib2 can be a predictive and valuable biomarker for the diagnosis and treatment of cancer. Recent studies have illustrated that Trib2 plays a major role in cell fate determination of stem cells. Stem cells have the capacity to self-renew and differentiate into specific cell types. Stem cells are important sources for cell-based regenerative medicine and drug screening. Trib2 has been found to increase the self-renewal ability of embryonic stem cells, the reprogramming efficiency of somatic cells, and chondrogenesis. In this review, we will focus on the recent advances of Trib2 function in tumorigenesis and stem cell fate decisions. [MediaObject not available: see fulltext.]
Читать
тезис
|
Characterization of intracellular buffering power in human induced pluripotent stem cells and the loss of pluripotency is delayed by acidic stimulation and increase of NHE1 activity
|
01.02.2021 |
Lee S.P.
Chao S.C.
Chou M.F.
Huang S.F.
Dai N.T.
Wu G.J.
Tsai C.S.
Loh S.H.
Tsai Y.T.
|
Journal of Cellular Physiology |
10.1002/jcp.29959 |
0 |
Ссылка
© 2020 Wiley Periodicals LLC The homeostasis of intracellular pH (pHi) affects many cellular functions. Our previous study has established a functional and molecular model of the active pHi regulators in human induced pluripotent stem cells (hiPSCs). The aims of the present study were to further quantify passive pHi buffering power (β) and to investigate the effects of extracellular pH and Na+–H+ exchanger 1 (NHE1) activity on pluripotency in hiPSCs. pHi was detected by microspectrofluorimetry with pH-sensitive dye-BCECF. Western blot, immunofluorescence staining, and flow cytometry were used to detect protein expression and pluripotency. Our study in hiPSCs showed that (a) the value of total (βtot), intrinsic (βi), and CO2-dependent ((Formula presented.)) buffering power all increased while pHi increased; (b) during the spontaneous differentiation for 4 days, the β values of βtot and (Formula presented.) changed in a tendency of decrease, despite the absence of statistical significance; (c) an acidic cultured environment retained pluripotency and further upregulated expression and activity of NHE1 during spontaneous differentiation; (d) inhibition on NHE1 activity promoted the loss of pluripotency. In conclusion, we, for the first time, established a quantitative model of passive β during differentiation and demonstrated that maintenance of NHE1 at a higher level was of critical importance for pluripotency retention in hiPSCs.
Читать
тезис
|
Epithelial-to-mesenchymal transition as the driver of changing carcinoma and glioblastoma microenvironment
|
01.10.2020 |
Majc B.
Sever T.
Zarić M.
Breznik B.
Turk B.
Lah T.T.
|
Biochimica et Biophysica Acta - Molecular Cell Research |
10.1016/j.bbamcr.2020.118782 |
0 |
Ссылка
© 2020 Epithelial-to-mesenchymal transition (EMT) is an essential molecular and cellular process that is part of normal embryogenesis and wound healing, and also has a ubiquitous role in various types of carcinoma and glioblastoma. EMT is activated and regulated by specific microenvironmental endogenous triggers and a complex network of signalling pathways. These mostly include epigenetic events that affect protein translation-controlling factors and proteases, altogether orchestrated by the switching on and off of oncogenes and tumour-suppressor genes in cancer cells. The hallmark of cancer-linked EMT is that the process is incomplete, as it is opposed by the reverse process of mesenchymal-to-epithelial transition, which results in a hybrid epithelial/mesenchymal phenotype that shows notable cell plasticity. This is a characteristic of cancer stem cells (CSCs), and it is of the utmost importance in their niche microenvironment, where it governs CSC migratory and invasive properties, thereby creating metastatic CSCs. These cells have high resistance to therapeutic treatments, in particular in glioblastoma.
Читать
тезис
|
Poly(3-hydroxybutyrate)/hydroxyapatite/alginate scaffolds seeded with mesenchymal stem cells enhance the regeneration of critical-sized bone defect
|
01.09.2020 |
Volkov A.V.
Muraev A.A.
Zharkova I.I.
Voinova V.V.
Akoulina E.A.
Zhuikov V.A.
Khaydapova D.D.
Chesnokova D.V.
Menshikh K.A.
Dudun A.A.
Makhina T.K.
Bonartseva G.A.
Asfarov T.F.
Stamboliev I.A.
Gazhva Y.V.
Ryabova V.M.
Zlatev L.H.
Ivanov S.Y.
Shaitan K.V.
Bonartsev A.P.
|
Materials Science and Engineering C |
10.1016/j.msec.2020.110991 |
0 |
Ссылка
© 2020 Elsevier B.V. A critical-sized calvarial defect in rats is employed to reveal the osteoinductive properties of biomaterials. In this study, we investigate the osteogenic efficiency of hybrid scaffolds based on composites of a biodegradable and biocompatible polymer, poly(3-hydroxybutyrate) (PHB) with hydroxyapatite (HA) filled with alginate (ALG) hydrogel containing mesenchymal stem cells (MSCs) on the regeneration of the critical-sized radial defect of the parietal bone in rats. The scaffolds based on PHB and PHB/HA with desired shapes were prepared by two-stage salt leaching technique using a mold obtained by three-dimensional printing. To obtain PHB/HA/ALG/MSC scaffolds seeded with MSCs, the scaffolds were filled with ALG hydrogel containing MSCs; acellular PHB/ALG and PHB/ALG filled with empty ALG hydrogel were prepared for comparison. The produced scaffolds have high porosity and irregular interconnected pore structure. PHB/HA scaffolds supported MSC growth and induced cell osteogenic differentiation in a regular medium in vitro that was manifested by an increase in ALP activity and expression of the CD45 phenotype marker. The data of computed tomography and histological studies showed 94% and 92%, respectively, regeneration of critical-sized calvarial bone defect in vivo at 28th day after implantation of MSC-seeded PHB/HA/ALG/MSC scaffolds with 3.6 times higher formation of the main amount of bone tissue at 22–28 days in comparison with acellular PHB/HA/ALG scaffolds that was shown at the first time by fluorescent microscopy using the original technique of intraperitoneal administration of fluorescent dyes to living postoperative rats. The obtained in vivo results can be associated with the MSC-friendly microstructure and in vitro osteogenic properties of PHB/HA base-scaffolds. Thus, the obtained data demonstrate the potential of MSCs encapsulated in the bioactive biopolymer/mineral/hydrogel scaffold to improve the bone regeneration process in critical-sized bone defects.
Читать
тезис
|
Tricalcium phosphate cement supplemented with boron nitride nanotubes with enhanced biological properties
|
01.09.2020 |
Rau J.V.
Fosca M.
Fadeeva I.V.
Kalay S.
Culha M.
Raucci M.G.
Fasolino I.
Ambrosio L.
Antoniac I.V.
Uskoković V.
|
Materials Science and Engineering C |
10.1016/j.msec.2020.111044 |
0 |
Ссылка
© 2020 Elsevier B.V. A self-setting bone cement containing β-tricalcium phosphate (TCP) supplemented with boron nitride nanotubes (BNNTs, 1 wt%) was synthesized and analyzed in situ for its kinetics of hardening and selected physicochemical and biological properties. Moderately delayed due to the presence of BNNTs, the hardening reaction involved the transformation of the TCP precursor to the dicalcium phosphate (DCPD) product. In spite of the short-lived chemical transformations in the cement upon its hardening, the structural changes in it were extended. As a result, the compressive strength increased from day 1 to day 7 of the hardening reaction and the presence of BNNTs further increased it by ~25%. Fitting of the time-resolved energy-dispersive diffractometric data to the Johnson-Mehl-Avrami-Kolmogorov crystallization kinetics model conformed to the one-dimensional nucleation at a variable rate during the growth of elongated DCPD crystals from round TCP grains. For the first seven days of growth of human mesenchymal stem cells (hMSCs) on the cement, no difference in their proliferation was observed compared to the control. However, between the 7th and the 21st day, the cell proliferation decreased compared to the control because of the ongoing stem cell differentiation toward the osteoblast phenotype. This differentiation was accompanied by the higher expression of alkaline phosphatase, an early marker of hMSC differentiation into a pre-osteoblast phenotype. The TCP cement supplemented with BNNTs was able to thwart the production of reactive oxygen species (ROS) in hMSCs treated with H2O2/Fe2+ and bring the ROS levels down to the concentrations detected in the control cells, indicating the good capability of the material to protect the cells against the ROS-associated damage. Simultaneously, the cement increased the expression of mediators of inflammation in a co-culture of osteoblasts and macrophages, thus attesting to the direct reciprocity between the degrees of inflammation and stimulated new bone production.
Читать
тезис
|
A deeper understanding of intestinal organoid metabolism revealed by combining fluorescence lifetime imaging microscopy (FLIM) and extracellular flux analyses
|
01.02.2020 |
Okkelman I.
Neto N.
Papkovsky D.
Monaghan M.
Dmitriev R.
|
Redox Biology |
10.1016/j.redox.2019.101420 |
0 |
Ссылка
© 2019 Stem cells and the niche in which they reside feature a complex microenvironment with tightly regulated homeostasis, cell-cell interactions and dynamic regulation of metabolism. A significant number of organoid models has been described over the last decade, yet few methodologies can enable single cell level resolution analysis of the stem cell niche metabolic demands, in real-time and without perturbing integrity. Here, we studied the redox metabolism of Lgr5-GFP intestinal organoids by two emerging microscopy approaches based on luminescence lifetime measurement – fluorescence-based FLIM for NAD(P)H, and phosphorescence-based PLIM for real-time oxygenation. We found that exposure of stem (Lgr5-GFP) and differentiated (no GFP) cells to high and low glucose concentrations resulted in measurable shifts in oxygenation and redox status. NAD(P)H-FLIM and O2-PLIM both indicated that at high ‘basal’ glucose conditions, Lgr5-GFP cells had lower activity of oxidative phosphorylation when compared with cells lacking Lgr5. However, when exposed to low (0.5 mM) glucose, stem cells utilized oxidative metabolism more dynamically than non-stem cells. The high heterogeneity of complex 3D architecture and energy production pathways of Lgr5-GFP organoids were also confirmed by the extracellular flux (XF) analysis. Our data reveals that combined analysis of NAD(P)H-FLIM and organoid oxygenation by PLIM represents promising approach for studying stem cell niche metabolism in a live readout.
Читать
тезис
|
Spermatogenesis induction of spermatogonial stem cells using nanofibrous poly(l-lactic acid)/multi-walled carbon nanotube scaffolds and naringenin
|
01.12.2019 |
Ghorbani S.
Eyni H.
Khosrowpour Z.
Salari Asl L.
Shabani R.
Nazari H.
Mehdizadeh M.
Ebrahimi Warkiani M.
Amjadi F.
|
Polymers for Advanced Technologies |
10.1002/pat.4733 |
0 |
Ссылка
© 2019 John Wiley & Sons, Ltd. Spermatogenesis is a process in which animals generate spermatozoa from spermatogonial stem cells (SSCs). Successful in vitro differentiation of SSCs towards spermatids holds a significant promise for regeneration of impaired spermatogenesis. The present study aims to evaluate the efficiency of a 3D culture containing naringenin on proliferation and differentiation potentials of mouse SSCs. In this study, multi-walled carbon nanotubes (MWCNTs) were incorporated into poly(l-lactic acid) (PLLA) fibers via electrospinning technique. The fibrous PLLA/MWCNTs were studied by Fourier-transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), water contact angle measurements, electrical conductivity, and mechanical properties. Next, the SSCs were seeded into the PLLA/MWCNTs scaffolds and exhibited preferable survival and differentiation efficiency to subsequent cell lines. To shed more light on this matter, the immunocytochemistry, reverse-transcription polymerase chain reaction (RT-PCR), and qRT-PCR results showed that the aforementioned cells on the 3D fabrics overexpressed the C-kit and SYCP3 proteins. In addition, the reactive oxygen species (ROS) measurement data demonstrated that naringenin, an effective antioxidant, plays an important role in in vitro spermatogenesis. Taken together, the results of this study revealed the synergistic effects of 3D scaffolds and naringenin for efficient spermatogenesis in laboratories.
Читать
тезис
|
Chemical Reprogramming of Somatic Cells in Neural Direction: Myth or Reality?
|
01.08.2019 |
Samoilova E.
Revkova V.
Brovkina O.
Kalsin V.
Melnikov P.
Konoplyannikov M.
Galimov K.
Nikitin A.
Troitskiy A.
Baklaushev V.
|
Bulletin of Experimental Biology and Medicine |
10.1007/s10517-019-04570-5 |
0 |
Ссылка
© 2019, Springer Science+Business Media, LLC, part of Springer Nature. In in vitro experiments on cultures of human multipotent stem cells from the human bone arrow and dental pulp, we studied direct reprogramming towards neuro-glial lineage cells using a cocktail of small molecules. Reprogramming by the previously published protocol (with a cocktail containing β-mercaptoethanol, LIF, VPA, CHIR99021, and RepSox) and by the optimized protocol (VPA, RG108, А83-01, dorsomorphin, thiazovivin, CHIR99021, forskolin, and Isx9) allows obtaining cells with immunophenotypic and genetic signs of neural stem cells. However, neither the former, nor the optimized protocols allowed preparing neural progenitors capable of adequate terminal differentiation from both bone marrow-derived mesenchymal stem cells and nestin-positive neural crest-derived mesenchymal stem cells. Real-time PCR demonstrated the expression of some neurogenesis markers, but neural stem cell-specific expression pattern was not observed. The findings lead us to a conclusion that reprogramming with small molecules without additional factors modifying gene expression does not allow reproducible production of human neural stem cell-like progenitors that can be used as the source of neural tissue for the regenerative therapy.
Читать
тезис
|
About stem cell research in dentistry: Many doubts and too many pitfalls still affect the regenerative dentistry
|
20.10.2018 |
Tatullo M.
|
International Journal of Medical Sciences |
|
3 |
Ссылка
© Ivyspring International Publisher. Stem cells (SCs) research is one of the most promising approaches to regenerative medicine. Our understanding of SCs biology and their potential role in tissue repairing has notably increased during the last few years. Mesenchymal stem cells (MSCs) are present in almost all human tissues, including oral and dental tissues (dental-derived stem cells or DDSCs). Despite many doubts and too many pitfalls still affect regenerative dentistry; however, it represents an exciting challenge for the next generations of young dentists. Educating and training in regenerative medicine the new generation of researchers is of utmost importance, albeit often underestimated: regenerative dentistry represents a big opportunity for the next generations of researchers and clinicians, and this review report underlines that dental schools should pay more attention to teachings of strategic subjects, such as cell biology, molecular biology and tissue engineering.
Читать
тезис
|
Applying LIFT-technology for vasculature formation in tissue and organ engineering
|
13.08.2018 |
Antoshin A.
Fedyakov M.
Sobolevskaya M.
Churbanov S.
Minaev N.
Shpichka A.
Timashev P.
|
Proceedings - International Conference Laser Optics 2018, ICLO 2018 |
|
1 |
Ссылка
© 2018 IEEE. This study aimed to develop the approach to the vasculature formation using LIFT-technology for tissue and organ engineering.
Читать
тезис
|
Repair of damaged articular cartilage: Current approaches and future directions
|
11.08.2018 |
Medvedeva E.
Grebenik E.
Gornostaeva S.
Telpuhov V.
Lychagin A.
Timashev P.
Chagin A.
|
International Journal of Molecular Sciences |
|
14 |
Ссылка
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. Articular hyaline cartilage is extensively hydrated, but it is neither innervated nor vascularized, and its low cell density allows only extremely limited self-renewal. Most clinical and research efforts currently focus on the restoration of cartilage damaged in connection with osteoarthritis or trauma. Here, we discuss current clinical approaches for repairing cartilage, as well as research approaches which are currently developing, and those under translation into clinical practice. We also describe potential future directions in this area, including tissue engineering based on scaffolding and/or stem cells as well as a combination of gene and cell therapy. Particular focus is placed on cell-based approaches and the potential of recently characterized chondro-progenitors; progress with induced pluripotent stem cells is also discussed. In this context, we also consider the ability of different types of stem cell to restore hyaline cartilage and the importance of mimicking the environment in vivo during cell expansion and differentiation into mature chondrocytes.
Читать
тезис
|
Autophagy in glioma cells: An identity crisis with a clinical perspective
|
01.08.2018 |
Ulasov I.
Lenz G.
Lesniak M.
|
Cancer Letters |
|
2 |
Ссылка
© 2018 Elsevier B.V. Over the last decade, autophagy has emerged as one of the critical cellular systems that control homeostasis. Besides management of normal homeostatic processes, autophagy can also be induced by tissue damage stress or by rapidly progressing tumors. During tumor progression, autophagy mediates a cellular reaction to the changes inside and outside of cells, which leads to tumor adaptation. Even though the regulation of autophagy seems universal and is a well-described process, its dysregulation and role in glioma progression remain an important topic of investigation. In this review, we summarize recent evidence of autophagy regulation in brain tumor tissues and possible interconnection between signaling pathways that govern cellular responses. This perspective may help to assess the qualitative differences and various outcomes in response to autophagy stimulation.
Читать
тезис
|
Human endometrial stem cells: High-yield isolation and characterization
|
01.03.2018 |
Kovina M.
Krasheninnikov M.
Dyuzheva T.
Danilevsky M.
Klabukov I.
Balyasin M.
Chivilgina O.
Lyundup A.
|
Cytotherapy |
|
5 |
Ссылка
© 2018 International Society for Cellular Therapy Background: Menstrual blood is only recently and still poorly studied, but it is an abundant and noninvasive source of highly proliferative mesenchymal stromal cells (MSCs). However, no appropriate isolation method has been reported due to its high viscosity and high content of clots and desquamated epithelium. Methods: We studied three different isolation approaches and their combinations: ammonium-containing lysing buffer, distilled water and gradient-density centrifugation. We tested the proliferative capacity, morphology, surface markers and pluripotency of the resulting cells. Results: Our isolation method yields up to four million nucleated cells per milliliter of initial blood, of which about 0.2–0.3% are colony-forming cells expressing standard mesenchymal markers CD90, CD105 and CD73, but not expressing CD45, CD34, CD117, CD133 or HLA-G. The cells have high proliferative potential (doubling in 26 h) and the ability to differentiate into adipocytes and osteocytes. Early endometrial MSCs (eMSCs) express epithelial marker cytokeratin 7 (CK7). CK7 is easily induced in later passages in a prohepatic environment. We show for the first time that a satisfactory and stable yield of eMSCs is observed throughout the whole menstrual period (5 consecutive days) of a healthy woman. Discussion: The new cost/yield adequate method allows isolation from menstrual blood a relatively homogenous pool of highly proliferative MSCs, which seem to be the best candidates for internal organ therapy due to their proepithelial background (early expression of CK7 and its easy induction in later passages) and for mass cryobanking due to their high yield and availability.
Читать
тезис
|
Effects of Electromagnetic Fields Modulated by Infralow Frequencies on the Production of Stem Cells
|
01.03.2018 |
Zilov V.
Subbotina T.
Yashin A.
Khadartsev A.
Ivanov D.
|
Bulletin of Experimental Biology and Medicine |
|
0 |
Ссылка
© 2018, Springer Science+Business Media, LLC, part of Springer Nature. Experimental validation of the method for regulation of stem cell proliferation and differentiation is carried out. The method consists in exposure to ultrahigh frequency electromagnetic radiation, modulated by infralow frequencies with variable parameters. A specially designed programmer, setting up the parameters of exposure, is connected to the source of radiation. The zones of anatomical location of the red bone marrow of rats were exposed for 15 min to the amplitude-modulated electromagnetic radiation of ultrahigh frequency range. The parameters of exposure were determined in previous studies. The red bone marrow was collected from the sternum and head of the femur. The cellular composition of the red bone marrow was evaluated 1, 2, 3, and 6 days after the exposure. The optimal therapeutic mode of irradiation was then chosen, leading to stem cell activation with subsequent proliferation and differentiation into mature red bone marrow cells.
Читать
тезис
|
Blockade of Neuroglobin Reduces Protection of Conditioned Medium from Human Mesenchymal Stem Cells in Human Astrocyte Model (T98G) Under a Scratch Assay
|
01.03.2018 |
Baez-Jurado E.
Vega G.
Aliev G.
Tarasov V.
Esquinas P.
Echeverria V.
Barreto G.
|
Molecular Neurobiology |
|
13 |
Ссылка
© 2017, Springer Science+Business Media New York. Previous studies have indicated that paracrine factors (conditioned medium) increase wound closure and reduce reactive oxygen species in a traumatic brain injury in vitro model. Although the beneficial effects of conditioned medium from human adipose tissue-derived mesenchymal stem cells (hMSCA-CM) have been previously suggested for various neurological diseases, their actions on astrocytic cells are not well understood. In this study, we have explored the effect of hMSCA-CM on human astrocyte model (T98G cells) subjected to scratch assay. Our results indicated that hMSCA-CM improved cell viability, reduced nuclear fragmentation, attenuated the production of reactive oxygen species, and preserved mitochondrial membrane potential and ultrastructural parameters. In addition, hMSCA-CM upregulated neuroglobin in T98G cells and the genetic silencing of this protein prevented the protective action of hMSCA-CM on damaged cells, suggesting that neuroglobin is mediating, at least in part, the protective effect of hMSCA-CM. Overall, this evidence suggests that the use of hMSCA-CM is a promising therapeutic strategy for the protection of astrocytic cells in central nervous system (CNS) pathologies.
Читать
тезис
|
Cell therapy for stress urinary incontinence: Present-day frontiers
|
01.02.2018 |
Vinarov A.
Atala A.
Yoo J.
Slusarenco R.
Zhumataev M.
Zhito A.
Butnaru D.
|
Journal of Tissue Engineering and Regenerative Medicine |
|
6 |
Ссылка
Copyright © 2017 John Wiley & Sons, Ltd. Stress urinary incontinence (SUI) significantly diminishes the quality of patients' lives. Currently available surgical and nonsurgical therapies remain far from ideal. At present, advances in cellular technologies have stirred growing interest in the use of autologous cell treatments aimed to regain urinary control. The objective was to conduct a review of the literature and analyse preclinical and clinical studies dedicated to various cell therapies for SUI, assessing their effectiveness, safety, and future prospects. A systematic literature search in PubMed was conducted using the following key terms: “stem,” “cell,” “stress,” “urinary,” and “incontinence.” A total of 32 preclinical studies and 15 clinical studies published between 1946 and December 2014 were included in the review. Most preclinical trials have used muscle-derived stem cells and adipose-derived stem cells. However, at present, the application of other types of cells, such as human amniotic fluid stem muscle-derived progenitor cells and bone marrow mesenchymal stromal cells, is becoming more extensive. While the evidence shows that these therapies are effective and safe, further work is required to standardize surgical techniques, as well as to identify indications for their use, doses and number of doses. Future research will have to focus on clinical applications of cell therapies; namely, it will have to determine indications for their use, doses of cells, optimal surgical techniques and methods, attractive cell sources, as well as to develop clinically relevant animal models and make inroads into understanding the mechanisms of SUI improvement by cell therapies.
Читать
тезис
|
Bone marrow stem cells for the critical limb ischemia treatment: Biological aspects and clinical application
|
01.01.2018 |
Orekhov P.
Konoplyannikov M.
Baklaushev V.
Kalsin V.
Averyanov A.
Konopliannikov A.
Habazov R.
Troitskiy A.
|
Genes and Cells |
|
0 |
Ссылка
© 2018 Human Stem Cell Institute. All rights reserved. Cell therapy is one of the most promising directions in the treatment of critical limb ischemia (CLI). In spite of certain advances achieved in this field in the last decades, which are related to application of bone marrow stem cells (BMSC), a large number of problems still remain unsolved. In this review, we discuss the BMSC biology, mechanisms of their therapeutic effect in the CLI treatment and results of the most notable BMSC-based clinical studies in detail.
Читать
тезис
|
Mesenchymal stem cell therapy for ischemic heart disease: Advances and challenges
|
01.01.2018 |
Konoplyannikov M.
Kotova S.
Baklaushev V.
Konoplyannikov A.
Kalsin V.
Timashev P.
Troitskiy A.
|
Current Pharmaceutical Design |
|
3 |
Ссылка
© 2018 Bentham Science Publishers. Ischemic Heart Disease (IHD) has been recognized as the main cause of mortality in the modern world. Application of cell therapy technologies for the IHD treatment has been actively studied from the beginning of 2000s. The review is dedicated to the use of mesenchymal stem cells (MSC) in the therapy of IHD. The strategies of the MSC modification in vitro for improvement of their regenerative potential are extensively discussed, including preconditioning to enhance the cell survival, boosting their paracrine effect and manipulating their car-diomyogenic differentiation. The optimization of the MSC delivery and opportunities related to the use of biomaterials as cell carriers are also discussed. The results of the most important clinical studies on the MSC-based IHD therapy are presented, including those completed and published in the literature and the ongoing clinical trials registered at clinicaltrials.gov by June 2018.
Читать
тезис
|