Spectral analysis combined with nonlinear optical measurement of laser printed biopolymer composites comprising chitosan/SWCNT
|
01.06.2020 |
Savelyev M.S.
Gerasimenko A.Y.
Vasilevsky P.N.
Fedorova Y.O.
Groth T.
Ten G.N.
Telyshev D.V.
|
Analytical Biochemistry |
10.1016/j.ab.2020.113710 |
0 |
Ссылка
© 2020 Elsevier Inc. Biopolymer composites based on two types of chitosan (chitosan succinate and low-molecular weight chitosan) with single-walled carbon nanotubes (SWCNT) were created by laser printing. SWCNT have good dispersibility in chitosan solutions and therefore, can form relatively homogeneous films that was shown in scanning electron microscopy images. For the studies film composites were formed under the action of laser radiation on aqueous dispersion media. Study of the nonlinear optical process during the interaction of laser radiation with a disperse media has shown that low-molecular chitosan has a large nonlinear absorption coefficient of 17 cm/GW, while the addition of SWCNT lead to a significant increase up to 902 cm/GW. The threshold intensity for these samples was 5.5 MW/cm2 with nanotubes. If intensity exceeds the threshold value, nonlinear effects occur, which, in turn, lead to the transformation of a liquid into a solid phase. Characterization of films by FTIR and Raman spectroscopy indicated arising molecular interactions between chitosan and SWCNT detected as a small frequency shift and a change in the shape of radial breathing mode (RBM). The results indicate the possibility using aqueous dispersion media based on chitosan and SWCNT to create three-dimensional films and scaffolds for tissue engineering by laser printing.
Читать
тезис
|
Tracing upconversion nanoparticle penetration in human skin
|
01.12.2019 |
Khabir Z.
Guller A.
Rozova V.
Liang L.
Lai Y.
Goldys E.
Hu H.
Vickery K.
Zvyagin A.
|
Colloids and Surfaces B: Biointerfaces |
10.1016/j.colsurfb.2019.110480 |
0 |
Ссылка
© 2019 Elsevier B.V. Due to their unique optical properties upconversion nanoparticles (UCNPs) provide exceptionally high contrast for imaging of true nanoparticle distribution in excised human skin. It makes possible to show penetration of solid nanoparticles in skin treated with chemical enhancers. We demonstrated tracing upconversion nanoparticles in excised human skin by means of optical microscopy at the discrete particle level sensitivity to obtain their penetration profiles, which was validated by laser-ablation inductively-coupled-plasma mass-spectrometry. To demonstrate utilities of our method, UCNPs were coated with polymers, formulated in water and chemical enhancers, and applied on excised human skin mounted on Franz cells, followed by imaging using a custom-built laser-scanning microscope. To evaluate the toxicity impact on skin by polymer-coated UCNPs, we introduced a tissue engineering model of viable epidermis made of decellularized chick embryo skin seeded with keratinocytes. UCNPs formulated in water stopped in stratum corneum, whereas UCNPs formulated in ethanol-water solution crossed stratum corneum and reached viable epidermis – hence, the enhancement effect for solid nanoparticles was detected by optical microscopy. All polymer-coated UCNPs were found nontoxic within the accepted safety levels. The keratinocyte resilience to polyethyleneimine-coated UCNPs was surprising considering cytotoxicity of polyethyleneimine to two-dimensional cell cultures.
Читать
тезис
|
Extracellular matrix-based hydrogels obtained from human tissues: A work still in progress
|
01.10.2019 |
Gazia C.
Tamburrini R.
Asthana A.
Chaimov D.
Muir S.
Marino D.
Delbono L.
Villani V.
Perin L.
Di Nardo P.
Robertson J.
Orlando G.
|
Current Opinion in Organ Transplantation |
10.1097/MOT.0000000000000691 |
0 |
Ссылка
© 2019 Wolters Kluwer Health, Inc. Purpose of reviewThe current review summarizes contemporary decellularization and hydrogel manufacturing strategies in the field of tissue engineering and regenerative medicine.Recent findingsDecellularized extracellular matrix (ECM) bioscaffolds are a valuable biomaterial that can be purposed into various forms of synthetic tissues such as hydrogels. ECM-based hydrogels can be of animal or human origin. The use of human tissues as a source for ECM hydrogels in the clinical setting is still in its infancy and current literature is scant and anecdotal, resulting in inconclusive results.SummaryThus far the methods used to obtain hydrogels from human tissues remains a work in progress. Gelation, the most complex technique in obtaining hydrogels, is challenging due to remarkable heterogeneity of the tissues secondary to interindividual variability. Age, sex, ethnicity, and preexisting conditions are factors that dramatically undermine the technical feasibility of the gelation process. This is contrasted with animals whose well defined anatomical and histological characteristics have been selectively bred for the goal of manufacturing hydrogels.
Читать
тезис
|
LIFT-bioprinting, is it worth it?
|
01.09.2019 |
Antoshin A.
Churbanov S.
Minaev N.
Zhang D.
Zhang Y.
Shpichka A.
Timashev P.
|
Bioprinting |
10.1016/j.bprint.2019.e00052 |
2 |
Ссылка
© 2019 Elsevier B.V. To date, laser-induced forward transfer (LIFT) is one of the most developing areas in bioprinting. It is based on a precise nozzle-free laser-assisted hydrogel microdroplet transfer. Although this technique was first mentioned in the 1980s, it started to gain popularity in biomedicine only a decade ago. While the interest in LIFT bioprinting is constantly growing, it is essential to provide a framework of its possibilities and limitations. This review aims to facilitate the search for a common language between physicists and biologists and thus become a short guide to using LIFT technology for biomedicine. Here, we compared various points such as lasers, bioinks components, collector substrate, post-treatment, and printing processes that are crucial for LIFT bioprinting and applied in published studies on it. The core of this review is the discussion of biological and physical aspects to fabricate tissues and organs and the not-known difficulties that can be encountered during the laser printing process and were not given sufficient attention earlier.
Читать
тезис
|
Large-scale production of stem cells utilizing microcarriers: A biomaterials engineering perspective from academic research to commercialized products
|
01.10.2018 |
Tavassoli H.
Alhosseini S.
Tay A.
Chan P.
Weng Oh S.
Warkiani M.
|
Biomaterials |
|
9 |
Ссылка
© 2018 Elsevier Ltd Human stem cells, including pluripotent, embryonic and mesenchymal, stem cells play pivotal roles in cell-based therapies. Over the past decades, various methods for expansion and differentiation of stem cells have been developed to satisfy the burgeoning clinical demands. One of the most widely endorsed technologies for producing large cell quantities is using microcarriers (MCs) in bioreactor culture systems. In this review, we focus on microcarriers properties that can manipulate the expansion and fate of stem cells. Here, we provide an overview of commercially available MCs and focus on novel stimulus responsive MCs controlled by temperature, pH and field changes. Different features of MCs including composition, surface coating, morphology, geometry/size, surface functionalization, charge and mechanical properties, and their cellular effects are also highlighted. We then conclude with current challenges and outlook on this promising technology.
Читать
тезис
|
Applying LIFT-technology for vasculature formation in tissue and organ engineering
|
13.08.2018 |
Antoshin A.
Fedyakov M.
Sobolevskaya M.
Churbanov S.
Minaev N.
Shpichka A.
Timashev P.
|
Proceedings - International Conference Laser Optics 2018, ICLO 2018 |
|
1 |
Ссылка
© 2018 IEEE. This study aimed to develop the approach to the vasculature formation using LIFT-technology for tissue and organ engineering.
Читать
тезис
|
Angiogenic potential of spheroids from umbilical cord and adipose-derived multipotent mesenchymal stromal cells within fibrin gel
|
21.05.2018 |
Gorkun A.
Shpichka A.
Zurina I.
Koroleva A.
Kosheleva N.
Nikishin D.
Butnaru D.
Timashev P.
Repin V.
Saburina I.
|
Biomedical Materials (Bristol) |
|
4 |
Ссылка
© 2018 IOP Publishing Ltd. One of the essential goals in regenerative medicine is microvascularization which enables an effective blood supply within de novo constructed tissues and organs. In our study, we used two common multipotent mesenchymal stromal cell (MMSC) sources (subcutaneous adipose tissue and Wharton's jelly of the umbilical cord) where is a subpopulation of endothelial precursors. In the medium supplemented with VEGF, the 3D cultures of UC MMSCs and ADSCs promoted the endothelial cell differentiation. To evaluate their ability to form a capillary-like network, we encapsulated spheroids within non-modified and PEGylated fibrin hydrogels. The PEGylated hydrogel supported better the formation of multibranched cords than the pure fibrin gel. Analysis of tubule growth rate, length, and branching showed that the differentiated ADSCs had higher angiogenic potential than the differentiated hUC MMSCs. Our study can be a basis for the development of new strategies in tissue engineering and treatment of vascular diseases.
Читать
тезис
|
Cell therapy for stress urinary incontinence: Present-day frontiers
|
01.02.2018 |
Vinarov A.
Atala A.
Yoo J.
Slusarenco R.
Zhumataev M.
Zhito A.
Butnaru D.
|
Journal of Tissue Engineering and Regenerative Medicine |
|
6 |
Ссылка
Copyright © 2017 John Wiley & Sons, Ltd. Stress urinary incontinence (SUI) significantly diminishes the quality of patients' lives. Currently available surgical and nonsurgical therapies remain far from ideal. At present, advances in cellular technologies have stirred growing interest in the use of autologous cell treatments aimed to regain urinary control. The objective was to conduct a review of the literature and analyse preclinical and clinical studies dedicated to various cell therapies for SUI, assessing their effectiveness, safety, and future prospects. A systematic literature search in PubMed was conducted using the following key terms: “stem,” “cell,” “stress,” “urinary,” and “incontinence.” A total of 32 preclinical studies and 15 clinical studies published between 1946 and December 2014 were included in the review. Most preclinical trials have used muscle-derived stem cells and adipose-derived stem cells. However, at present, the application of other types of cells, such as human amniotic fluid stem muscle-derived progenitor cells and bone marrow mesenchymal stromal cells, is becoming more extensive. While the evidence shows that these therapies are effective and safe, further work is required to standardize surgical techniques, as well as to identify indications for their use, doses and number of doses. Future research will have to focus on clinical applications of cell therapies; namely, it will have to determine indications for their use, doses of cells, optimal surgical techniques and methods, attractive cell sources, as well as to develop clinically relevant animal models and make inroads into understanding the mechanisms of SUI improvement by cell therapies.
Читать
тезис
|
Vibrational spectroscopy of tissue-engineered structures based on proteins, chitosan, and carbon nanotube conjugates
|
01.01.2018 |
Polokhin A.
Fedorova Y.
Gerasimenko A.
|
Proceedings of SPIE - The International Society for Optical Engineering |
|
1 |
Ссылка
© 2018 SPIE. In this work, tissue-engineered structures based on a matrix of protein conjugates, chitosan and carbon nanotubes were prepared and studied. Bovine serum albumin (BSA), bovine collagen (BCrossed D sign¡) were used. Two types of single-walled carbon nanotubes (SWCNTs) were used to form a strong internal scaffold in a protein-chitosan matrix under the action of laser radiation. Tissue-engineered structures were created by means of layered deposition and laser evaporation of the initial aqueous dispersion from SWCNT, BSA, BC and chitosan succinate. As sources of laser radiation, a continuous diode laser with a wavelength of 810 nm and a pulsed fiber laser with a wavelength of 1064 nm and frequency of 80 kHz were used. Studies of tissue-engineered structures were carried out using vibrational spectroscopy methods (IR and Raman). The changes in the frequencies and intensities of the corresponding absorption bands and Raman lines of the amide group oscillations were analyzed. IR spectra of tissue-engineered structures demonstrated a high degree of binding of organic (protein, chitosan) and inorganic (SWCNT) components. The structure and defectiveness of the carbon nanotube scaffold were investigated in the Raman spectra.
Читать
тезис
|
Role of mesenchymal multipotent stromal cells in remodeling of bone defects
|
01.01.2018 |
Kiselevsky M.
Anisimova N.
Dolzhikova Y.
Vlasenko R.
Senatov F.
Karaulov A.
|
Medical Immunology (Russia) |
|
0 |
Ссылка
© 2018, SPb RAACI. Ability of mesenchymal multipotent stromal cells (MSCs) to differentiate into several types of mesenchymal tissues allows to consider these cells the main candidates for creating tissue engineering constructions for regenerative medicine. MSCs promote integration of bio-implants into the native bone and stimulate osteogenesis. MSCs are characterized by immunomodulatory properties, due to inflammation control and modification of immune cells. MSCs affect not only the in vivo immune response by preventing immunological rejection of implanted tissue engineering designs, but it can also influence the bone tissue immunity. MSCs play an important role in bone regeneration, by regulating the osteoblastic generation, and suppressing activity of inflammation effectors and osteoclastogenesis. Some pre-clinical and first clinical trials of bone bio-implants colonized with MSC, demonstrate promising outlooks for this strategy in order to obtain tissue engineering constructions for bone regeneration.
Читать
тезис
|
Hydrogel-assisted neuroregeneration approaches towards brain injury therapy: A state-of-the-art review
|
01.01.2018 |
Kornev V.
Grebenik E.
Solovieva A.
Dmitriev R.
Timashev P.
|
Computational and Structural Biotechnology Journal |
|
3 |
Ссылка
© 2018 The Authors Recent years have witnessed the development of an enormous variety of hydrogel-based systems for neuroregeneration. Formed from hydrophilic polymers and comprised of up to 90% of water, these three-dimensional networks are promising tools for brain tissue regeneration. They can assist structural and functional restoration of damaged tissues by providing mechanical support and navigating cell fate. Hydrogels also show the potential for brain injury therapy due to their broadly tunable physical, chemical, and biological properties. Hydrogel polymers, which have been extensively implemented in recent brain injury repair studies, include hyaluronic acid, collagen type I, alginate, chitosan, methylcellulose, Matrigel, fibrin, gellan gum, self-assembling peptides and proteins, poly(ethylene glycol), methacrylates, and methacrylamides. When viewed as tools for neuroregeneration, hydrogels can be divided into: (1) hydrogels suitable for brain injury therapy, (2) hydrogels that do not meet basic therapeutic requirements and (3) promising hydrogels which meet the criteria for further investigations. Our analysis shows that fibrin, collagen I and self-assembling peptide-based hydrogels display very attractive properties for neuroregeneration.
Читать
тезис
|