Fetal sigmoid colon mesentery made visible by routine ultrasound in the first and second trimester of pregnancy
|
01.05.2021 |
Wozniak S.
Zazga M.
Kurc-Darak B.
Tomialowicz M.
Paulsen F.
Florjanski J.
|
Annals of Anatomy |
10.1016/j.aanat.2021.151676 |
0 |
Ссылка
© 2021 Elsevier GmbH Background: Ultrasound is a routine procedure performed during pregnancy to monitor the status of the human fetus, including the development of the digestive tract. The aim of this publication was to determine the shape of the fetal sigmoid colon mesentery during the first and second trimester of pregnancy by means of ultrasound. Methods: The study was performed in 45 pregnant women (age: 36.4 years on average, range 25–45) during a routine ultrasound examination. The fetuses were between 12 and 22 weeks of pregnancy. The shape of the fetal sigmoid colon mesentery was analyzed. Results: We visualized the triangular shape of the mesentery in all 45 cases. A prevalence of scalene or isosceles acute triangles was found in both trimesters. At the 12−13 weeks we observed 5 different forms of mesenteric triangles – the scalene or isosceles acute triangles appeared at 33.3% and 28.6%, respectively. The obtuse scalene was present in 23.8 %. In the 2nd trimester (20−22 weeks) 4 types were found, among them 37.5 % acute scalene and 33.3 % acute isosceles. Conclusions: The fetal sigmoid colon mesentery can be visualized from the 12th week of pregnancy. The triangular shape of the sigmoid colon mesentery is easy to follow during routine ultrasound examinations.
Читать
тезис
|
The assessment of critical thinking skills of gifted children before and after taking a critical thinking development course
|
01.03.2021 |
Gilmanshina S.
Smirnov S.
Ibatova A.
Berechikidze I.
|
Thinking Skills and Creativity |
10.1016/j.tsc.2020.100780 |
0 |
Ссылка
© 2020 The development of critical thinking is a fundamental task of the modern education system. However, practically, it turns out that a number of teachers are not competent enough in this area. The purpose of the study is to identify the most universal and valid methods for the dynamic assessment of the level of critical thinking in children. There are also difficulties associated with the assessment of the level of critical thinking, the selection of valid methods for its study, especially when it comes to preschool or primary school children. The participants (186 children 6–8 years ages from 3 schools of Moscow (Russian Federation) in the group of gifted children did not fall into the groups with a low development of critical thinking, and the participants in the control group did not fall into the group with the highest or the highest level of development of critical thinking. In two tests, the data for the gifted and control groups showed high correlation values between the definition of giftedness and the level of critical thinking development (0.958 and 0.962 in the static test and 0.659 and 0.908 in the dynamic test, respectively). Therefore, it is relevant to select valid methods that would allow the assessment of critical thinking as one of the criteria for the giftedness of a child in dynamics, that is, in the process of developmental learning. During the research such methods were used – sculpture method, absurdity method, verbal fantasy method, drawing method, think of a game method. The research results have shown that giftedness has a psychophysiological basis, the described test methods are valid and can be used for the assessment of the level of critical thinking and the quality of the educational process.
Читать
тезис
|
Urinary Nerve Growth Factor in full-term, preterm and intra uterine growth restriction neonates: Association with brain growth at 30–40 days of postnatal period and with neuro-development outcome at two years. A pilot study
|
10.01.2021 |
Aisa M.C.
Barbati A.
Cappuccini B.
De Rosa F.
Gerli S.
Clerici G.
Kaptilnyy V.A.
Ishenko A.I.
Di Renzo G.C.
|
Neuroscience Letters |
10.1016/j.neulet.2020.135459 |
0 |
Ссылка
© 2020 Elsevier B.V. Nerve Growth Factor (NGF) and Brain Derived Neurotrophic Factor (BDNF) are crucial for the peripheral and central nervous system development, respectively, and differential brain and blood levels in Intra Uterine Growth Restriction (IUGR) and prematurity have been found. As reduced growth of brain regions, measured at 30−40 days of postnatal period, has been demonstrated in preterm and IUGR neonates who showed impaired neuro-development at two years of age, in this study, the levels of NGF and BDNF were evaluated in the urine samples of 30−40 day-old subjects who were full-term, preterm and IUGR and showed a normal or an abnormal neuro-development at follow up after two years. Neurotrophins were measured concurrently with volumes of whole brain, thalamus, frontal cortex and cerebellum. Values were then correlated with later neuro-developmental outcome. Biochemical parameters and cerebral volumes were assessed using colorimetric ELISA kits and three-dimensional ultra-sonography (3DUS), respectively. Neuro-development was estimated using the Griffiths-II test. Urinary NGF and brain volumes significantly correlated and were lower in preterm and IUGR subjects characterized by poor neuro-development. No differences were seen in the case of BDNF. The present investigation demonstrates, for the first time, the strong and direct association of NGF with brain growth at the initial phase of the postnatal period and with neuro-developmental outcome in later life. Remarkably, urinary NGF may be suggested as an early prognostic indicator of high long-term risk of motor and cognitive impairment in IUGR and preterm neonates.
Читать
тезис
|
Urinary Nerve Growth Factor in full-term, preterm and intra uterine growth restriction neonates: Association with brain growth at 30–40 days of postnatal period and with neuro-development outcome at two years. A pilot study
|
10.01.2021 |
Aisa M.C.
Barbati A.
Cappuccini B.
De Rosa F.
Gerli S.
Clerici G.
Kaptilnyy V.A.
Ishenko A.I.
Di Renzo G.C.
|
Neuroscience Letters |
10.1016/j.neulet.2020.135459 |
0 |
Ссылка
© 2020 Elsevier B.V. Nerve Growth Factor (NGF) and Brain Derived Neurotrophic Factor (BDNF) are crucial for the peripheral and central nervous system development, respectively, and differential brain and blood levels in Intra Uterine Growth Restriction (IUGR) and prematurity have been found. As reduced growth of brain regions, measured at 30−40 days of postnatal period, has been demonstrated in preterm and IUGR neonates who showed impaired neuro-development at two years of age, in this study, the levels of NGF and BDNF were evaluated in the urine samples of 30−40 day-old subjects who were full-term, preterm and IUGR and showed a normal or an abnormal neuro-development at follow up after two years. Neurotrophins were measured concurrently with volumes of whole brain, thalamus, frontal cortex and cerebellum. Values were then correlated with later neuro-developmental outcome. Biochemical parameters and cerebral volumes were assessed using colorimetric ELISA kits and three-dimensional ultra-sonography (3DUS), respectively. Neuro-development was estimated using the Griffiths-II test. Urinary NGF and brain volumes significantly correlated and were lower in preterm and IUGR subjects characterized by poor neuro-development. No differences were seen in the case of BDNF. The present investigation demonstrates, for the first time, the strong and direct association of NGF with brain growth at the initial phase of the postnatal period and with neuro-developmental outcome in later life. Remarkably, urinary NGF may be suggested as an early prognostic indicator of high long-term risk of motor and cognitive impairment in IUGR and preterm neonates.
Читать
тезис
|
The epiphyseal secondary ossification center: Evolution, development and function
|
01.01.2021 |
Xie M.
Chagin A.S.
|
Bone |
10.1016/j.bone.2020.115701 |
0 |
Ссылка
© 2020 Bone age is used widely by pediatricians to assess the skeletal maturity of a child and predict growth potential. This entails measuring the size of secondary ossification centers (SOCs), which develop with age in the ends of long bones, which are initially cartilaginous. However, little is presently known about the developmental biology, evolution and functional role of these skeletal elements. Here, we summarize the knowledge currently available in this area and discuss potential primary functions of the SOC.
Читать
тезис
|
The epiphyseal secondary ossification center: Evolution, development and function
|
01.01.2021 |
Xie M.
Chagin A.S.
|
Bone |
10.1016/j.bone.2020.115701 |
0 |
Ссылка
© 2020 Bone age is used widely by pediatricians to assess the skeletal maturity of a child and predict growth potential. This entails measuring the size of secondary ossification centers (SOCs), which develop with age in the ends of long bones, which are initially cartilaginous. However, little is presently known about the developmental biology, evolution and functional role of these skeletal elements. Here, we summarize the knowledge currently available in this area and discuss potential primary functions of the SOC.
Читать
тезис
|
The epiphyseal secondary ossification center: Evolution, development and function
|
01.01.2021 |
Xie M.
Chagin A.S.
|
Bone |
10.1016/j.bone.2020.115701 |
0 |
Ссылка
© 2020 Bone age is used widely by pediatricians to assess the skeletal maturity of a child and predict growth potential. This entails measuring the size of secondary ossification centers (SOCs), which develop with age in the ends of long bones, which are initially cartilaginous. However, little is presently known about the developmental biology, evolution and functional role of these skeletal elements. Here, we summarize the knowledge currently available in this area and discuss potential primary functions of the SOC.
Читать
тезис
|
Environmental influence on neurodevelopmental disorders: Potential association of heavy metal exposure and autism
|
01.12.2020 |
Ijomone O.M.
Olung N.F.
Akingbade G.T.
Okoh C.O.A.
Aschner M.
|
Journal of Trace Elements in Medicine and Biology |
10.1016/j.jtemb.2020.126638 |
0 |
Ссылка
© 2020 Elsevier GmbH Environmental factors have been severally established to play major roles in the pathogenesis of neurodevelopmental disorders including autism spectrum disorder (ASD). ASD is a neurodevelopmental disorder that is associated with symptoms that reduce the quality of life of affected individuals such as social interaction deficit, cognitive impairment, intellectual disabilities, restricted and repetitive behavioural patterns. ASD pathogenesis has been associated with environmental and genetic factors that alter physiologic processes during development. Here, we review literatures highlighting the environmental impact on neurodevelopmental disorders, and mechanisms by which environmental toxins may influence neurodevelopment. Furthermore, this review discusses reports highlighting neurotoxic metals (specifically, lead, mercury, cadmium, nickel and manganese) as environmental risk factors in the aetiology of ASD. This work, thus suggests that improving the environment could be vital in the management of ASD.
Читать
тезис
|
Cellular effects and clinical implications of SLC2A3 copy number variation
|
01.12.2020 |
Ziegler G.C.
Almos P.
McNeill R.V.
Jansch C.
Lesch K.P.
|
Journal of Cellular Physiology |
10.1002/jcp.29753 |
2 |
Ссылка
© 2020 The Authors. Journal of Cellular Physiology published by Wiley Periodicals LLC SLC2A3 encodes the predominantly neuronal glucose transporter 3 (GLUT3), which facilitates diffusion of glucose across plasma membranes. The human brain depends on a steady glucose supply for ATP generation, which consequently fuels critical biochemical processes, such as axonal transport and neurotransmitter release. Besides its role in the central nervous system, GLUT3 is also expressed in nonneural organs, such as the heart and white blood cells, where it is equally involved in energy metabolism. In cancer cells, GLUT3 overexpression contributes to the Warburg effect by answering the cell's increased glycolytic demands. The SLC2A3 gene locus at chromosome 12p13.31 is unstable and prone to non-allelic homologous recombination events, generating multiple copy number variants (CNVs) of SLC2A3 which account for alterations in SLC2A3 expression. Recent associations of SLC2A3 CNVs with different clinical phenotypes warrant investigation of the potential influence of these structural variants on pathomechanisms of neuropsychiatric, cardiovascular, and immune diseases. In this review, we accumulate and discuss the evidence how SLC2A3 gene dosage may exert diverse protective or detrimental effects depending on the pathological condition. Cellular states which lead to increased energetic demand, such as organ development, proliferation, and cellular degeneration, appear particularly susceptible to alterations in SLC2A3 copy number. We conclude that better understanding of the impact of SLC2A3 variation on disease etiology may potentially provide novel therapeutic approaches specifically targeting this GLUT.
Читать
тезис
|
Hair trace element concentrations in autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD)
|
01.09.2020 |
Skalny A.V.
Mazaletskaya A.L.
Ajsuvakova O.P.
Bjørklund G.
Skalnaya M.G.
Notova S.V.
Chernova L.N.
Skalny A.A.
Burtseva T.I.
Tinkov A.A.
|
Journal of Trace Elements in Medicine and Biology |
10.1016/j.jtemb.2020.126539 |
0 |
Ссылка
© 2020 Elsevier GmbH Background: The existing data demonstrate that alteration of trace element and mineral status in children with neurodevelopmental disorders including ASD and ADHD. However, comparative analysis of the specific patterns of trace element and mineral metabolism in children with ASD and ADHD was not performed. Therefore, the primary objective of the present study was to assess hair trace element and mineral levels in boys with ADHD, ASD, as well as ADHD with ASD. Methods: Boys with ADHD (n = 52), ASD (n = 53), both ADHD and ASD (n = 52), as well as neurotypical controls (n = 52) were examined. Hair analysis was performed using inductively-coupled plasma mass-spectrometry. Results: The obtained data demonstrate that hair Co, Mg, Mn, and V levels were significantly reduced in children with ADHD and ASD, and especially in boys with ADHD + ASD. Hair Zn was found to be reduced by 20% (p = 0.009) only in children with ADHD + ASD as compared to healthy controls. Factor analysis demonstrated that ASD was associated with significant alteration of hair Co, Fe, Mg, Mn, and V levels, whereas impaired hair Mg, Mn, and Zn content was also significantly associated with ADHD. In regression models hair Zn and Mg were negatively associated with severity of neurodevelopmental disorders. The revealed similarity of trace element and mineral disturbances in ASD and ADHD may be indicative of certain similar pathogenetic features. Conclusion: The obtained data support the hypothesis that trace elements and minerals, namely Mg, Mn, and Zn, may play a significant role in development of both ADHD and ASD. Improvement of Mg, Mn, and Zn status in children with ASD and ADHD may be considered as a nutritional strategy for improvement of neurodevelopmental disturbances, although clinical trials and experimental studies are highly required to support this hypothesis.
Читать
тезис
|
Serotonin (5-HT) neuron-specific inactivation of Cadherin-13 impacts 5-HT system formation and cognitive function
|
15.05.2020 |
Forero A.
Ku H.P.
Malpartida A.B.
Wäldchen S.
Alhama-Riba J.
Kulka C.
Aboagye B.
Norton W.H.J.
Young A.M.J.
Ding Y.Q.
Blum R.
Sauer M.
Rivero O.
Lesch K.P.
|
Neuropharmacology |
10.1016/j.neuropharm.2020.108018 |
0 |
Ссылка
© 2020 The Authors Genome-wide screening approaches identified the cell adhesion molecule Cadherin-13 (CDH13) as a risk factor for neurodevelopmental disorders, nevertheless the contribution of CDH13 to the disease mechanism remains obscure. CDH13 is involved in neurite outgrowth and axon guidance during early brain development and we previously provided evidence that constitutive CDH13 deficiency influences the formation of the raphe serotonin (5-HT) system by modifying neuron-radial glia interaction. Here, we dissect the specific impact of CDH13 on 5-HT system development and function using a 5-HT neuron-specific Cdh13 knockout mouse model (conditional Cdh13 knockout, Cdh13 cKO). Our results show that exclusive inactivation of CDH13 in 5-HT neurons selectively increases 5-HT neuron density in the embryonic dorsal raphe, with persistence into adulthood, and serotonergic innervation of the developing prefrontal cortex. At the behavioral level, adult Cdh13 cKO mice display delayed acquisition of several learning tasks and a subtle impulsive-like phenotype, with decreased latency in a sociability paradigm alongside with deficits in visuospatial memory. Anxiety-related traits were not observed in Cdh13 cKO mice. Our findings further support the critical role of CDH13 in the development of dorsal raphe 5-HT circuitries, a mechanism that may underlie specific clinical features observed in neurodevelopmental disorders.
Читать
тезис
|
Serotonin (5-HT) neuron-specific inactivation of Cadherin-13 impacts 5-HT system formation and cognitive function
|
15.05.2020 |
Forero A.
Ku H.P.
Malpartida A.B.
Wäldchen S.
Alhama-Riba J.
Kulka C.
Aboagye B.
Norton W.H.J.
Young A.M.J.
Ding Y.Q.
Blum R.
Sauer M.
Rivero O.
Lesch K.P.
|
Neuropharmacology |
10.1016/j.neuropharm.2020.108018 |
0 |
Ссылка
© 2020 The Authors Genome-wide screening approaches identified the cell adhesion molecule Cadherin-13 (CDH13) as a risk factor for neurodevelopmental disorders, nevertheless the contribution of CDH13 to the disease mechanism remains obscure. CDH13 is involved in neurite outgrowth and axon guidance during early brain development and we previously provided evidence that constitutive CDH13 deficiency influences the formation of the raphe serotonin (5-HT) system by modifying neuron-radial glia interaction. Here, we dissect the specific impact of CDH13 on 5-HT system development and function using a 5-HT neuron-specific Cdh13 knockout mouse model (conditional Cdh13 knockout, Cdh13 cKO). Our results show that exclusive inactivation of CDH13 in 5-HT neurons selectively increases 5-HT neuron density in the embryonic dorsal raphe, with persistence into adulthood, and serotonergic innervation of the developing prefrontal cortex. At the behavioral level, adult Cdh13 cKO mice display delayed acquisition of several learning tasks and a subtle impulsive-like phenotype, with decreased latency in a sociability paradigm alongside with deficits in visuospatial memory. Anxiety-related traits were not observed in Cdh13 cKO mice. Our findings further support the critical role of CDH13 in the development of dorsal raphe 5-HT circuitries, a mechanism that may underlie specific clinical features observed in neurodevelopmental disorders.
Читать
тезис
|
Serotonin (5-HT) neuron-specific inactivation of Cadherin-13 impacts 5-HT system formation and cognitive function
|
15.05.2020 |
Forero A.
Ku H.P.
Malpartida A.B.
Wäldchen S.
Alhama-Riba J.
Kulka C.
Aboagye B.
Norton W.H.J.
Young A.M.J.
Ding Y.Q.
Blum R.
Sauer M.
Rivero O.
Lesch K.P.
|
Neuropharmacology |
10.1016/j.neuropharm.2020.108018 |
0 |
Ссылка
© 2020 The Authors Genome-wide screening approaches identified the cell adhesion molecule Cadherin-13 (CDH13) as a risk factor for neurodevelopmental disorders, nevertheless the contribution of CDH13 to the disease mechanism remains obscure. CDH13 is involved in neurite outgrowth and axon guidance during early brain development and we previously provided evidence that constitutive CDH13 deficiency influences the formation of the raphe serotonin (5-HT) system by modifying neuron-radial glia interaction. Here, we dissect the specific impact of CDH13 on 5-HT system development and function using a 5-HT neuron-specific Cdh13 knockout mouse model (conditional Cdh13 knockout, Cdh13 cKO). Our results show that exclusive inactivation of CDH13 in 5-HT neurons selectively increases 5-HT neuron density in the embryonic dorsal raphe, with persistence into adulthood, and serotonergic innervation of the developing prefrontal cortex. At the behavioral level, adult Cdh13 cKO mice display delayed acquisition of several learning tasks and a subtle impulsive-like phenotype, with decreased latency in a sociability paradigm alongside with deficits in visuospatial memory. Anxiety-related traits were not observed in Cdh13 cKO mice. Our findings further support the critical role of CDH13 in the development of dorsal raphe 5-HT circuitries, a mechanism that may underlie specific clinical features observed in neurodevelopmental disorders.
Читать
тезис
|
Serum zinc, copper, zinc-to-copper ratio, and other essential elements and minerals in children with attention deficit/hyperactivity disorder (ADHD)
|
01.03.2020 |
Skalny A.
Mazaletskaya A.
Ajsuvakova O.
Bjørklund G.
Skalnaya M.
Chao J.
Chernova L.
Shakieva R.
Kopylov P.
Skalny A.
Tinkov A.
|
Journal of Trace Elements in Medicine and Biology |
10.1016/j.jtemb.2019.126445 |
0 |
Ссылка
© 2019 Elsevier GmbH Background: Essential trace elements and minerals play a significant role in neurodevelopment. Although certain studies demonstrated impaired essential trace element and mineral status in children with ADHD, the existing data are insufficient. The objective of the present study was to assess serum trace element and mineral levels in children with ADHD. Methods: Serum trace element and mineral levels in 68 children with ADHD and 68 neurotypical controls were assessed using ICP-MS at NexION 300D (PerkinElmer Inc., USA) equipped with ESI SC-2 DX4 autosampler (Elemental Scientific Inc., USA). Results: Serum Cr, Mg, and Zn levels in children with ADHD were 21 % (p = 0.010), 4 % (p = 0.005), and 7 % (p = 0. 001) lower as compared to the healthy controls, respectively. In turn, serum Cu/Zn values were 11 % higher than those in the control group. Age and gender had a significant impact on serum element levels in ADHD. Particularly, preschool children were characterized by significantly increased Cu (+8 %; p = 0.034), and Cu/Zn (+19 %; p < 0.001) values, whereas serum Zn (-9 %; p = 0.004) level was decreased. In primary school-aged children only 6 % (p = 0.007) lower Mg levels were observed. Both boys and girls with ADHD were characterized by 8 % (p = 0.016) lower serum Zn levels and 10 % (p = 0.049) higher Cu/Zn values when compared to neurotypical girls. Boys with ADHD also had significantly higher Cu/Zn, exceeding the respective control values by 12 % (p = 0.021), predominantly due to a 7 % (p = 0.035) decrease in serum Zn. Serum Mg levels were also found to be significantly lower than those in neurotypical children by 5 % (p = 0.007). In adjusted regression models serum Cr (β=-0.234; p = 0.009) and Cu/Zn (β = 0.245; p = 0.029) values were significantly associated with ADHD, respectively. Two-way ANOVA revealed a significant impact of ADHD on Cr, Mg, Zn, and Cu/Zn, whereas age was associated with Cu, I, Mg, Mo, and Cu/Zn, whereas gender accounted only for variability in serum Mn levels. Principal component analysis (PCA) also revealed significant contributions of Mg, Zn, and Cu/Zn values to ADHD variability. Conclusions: Hypothetically, the observed decrease of essential trace elements, namely Mg and Zn, and elevation of Cu/Zn may significantly contribute to the risk of ADHD or its severity and/or comorbidity.
Читать
тезис
|
Serum zinc, copper, zinc-to-copper ratio, and other essential elements and minerals in children with attention deficit/hyperactivity disorder (ADHD)
|
01.03.2020 |
Skalny A.
Mazaletskaya A.
Ajsuvakova O.
Bjørklund G.
Skalnaya M.
Chao J.
Chernova L.
Shakieva R.
Kopylov P.
Skalny A.
Tinkov A.
|
Journal of Trace Elements in Medicine and Biology |
10.1016/j.jtemb.2019.126445 |
0 |
Ссылка
© 2019 Elsevier GmbH Background: Essential trace elements and minerals play a significant role in neurodevelopment. Although certain studies demonstrated impaired essential trace element and mineral status in children with ADHD, the existing data are insufficient. The objective of the present study was to assess serum trace element and mineral levels in children with ADHD. Methods: Serum trace element and mineral levels in 68 children with ADHD and 68 neurotypical controls were assessed using ICP-MS at NexION 300D (PerkinElmer Inc., USA) equipped with ESI SC-2 DX4 autosampler (Elemental Scientific Inc., USA). Results: Serum Cr, Mg, and Zn levels in children with ADHD were 21 % (p = 0.010), 4 % (p = 0.005), and 7 % (p = 0. 001) lower as compared to the healthy controls, respectively. In turn, serum Cu/Zn values were 11 % higher than those in the control group. Age and gender had a significant impact on serum element levels in ADHD. Particularly, preschool children were characterized by significantly increased Cu (+8 %; p = 0.034), and Cu/Zn (+19 %; p < 0.001) values, whereas serum Zn (-9 %; p = 0.004) level was decreased. In primary school-aged children only 6 % (p = 0.007) lower Mg levels were observed. Both boys and girls with ADHD were characterized by 8 % (p = 0.016) lower serum Zn levels and 10 % (p = 0.049) higher Cu/Zn values when compared to neurotypical girls. Boys with ADHD also had significantly higher Cu/Zn, exceeding the respective control values by 12 % (p = 0.021), predominantly due to a 7 % (p = 0.035) decrease in serum Zn. Serum Mg levels were also found to be significantly lower than those in neurotypical children by 5 % (p = 0.007). In adjusted regression models serum Cr (β=-0.234; p = 0.009) and Cu/Zn (β = 0.245; p = 0.029) values were significantly associated with ADHD, respectively. Two-way ANOVA revealed a significant impact of ADHD on Cr, Mg, Zn, and Cu/Zn, whereas age was associated with Cu, I, Mg, Mo, and Cu/Zn, whereas gender accounted only for variability in serum Mn levels. Principal component analysis (PCA) also revealed significant contributions of Mg, Zn, and Cu/Zn values to ADHD variability. Conclusions: Hypothetically, the observed decrease of essential trace elements, namely Mg and Zn, and elevation of Cu/Zn may significantly contribute to the risk of ADHD or its severity and/or comorbidity.
Читать
тезис
|
Serum zinc, copper, zinc-to-copper ratio, and other essential elements and minerals in children with attention deficit/hyperactivity disorder (ADHD)
|
01.03.2020 |
Skalny A.
Mazaletskaya A.
Ajsuvakova O.
Bjørklund G.
Skalnaya M.
Chao J.
Chernova L.
Shakieva R.
Kopylov P.
Skalny A.
Tinkov A.
|
Journal of Trace Elements in Medicine and Biology |
10.1016/j.jtemb.2019.126445 |
0 |
Ссылка
© 2019 Elsevier GmbH Background: Essential trace elements and minerals play a significant role in neurodevelopment. Although certain studies demonstrated impaired essential trace element and mineral status in children with ADHD, the existing data are insufficient. The objective of the present study was to assess serum trace element and mineral levels in children with ADHD. Methods: Serum trace element and mineral levels in 68 children with ADHD and 68 neurotypical controls were assessed using ICP-MS at NexION 300D (PerkinElmer Inc., USA) equipped with ESI SC-2 DX4 autosampler (Elemental Scientific Inc., USA). Results: Serum Cr, Mg, and Zn levels in children with ADHD were 21 % (p = 0.010), 4 % (p = 0.005), and 7 % (p = 0. 001) lower as compared to the healthy controls, respectively. In turn, serum Cu/Zn values were 11 % higher than those in the control group. Age and gender had a significant impact on serum element levels in ADHD. Particularly, preschool children were characterized by significantly increased Cu (+8 %; p = 0.034), and Cu/Zn (+19 %; p < 0.001) values, whereas serum Zn (-9 %; p = 0.004) level was decreased. In primary school-aged children only 6 % (p = 0.007) lower Mg levels were observed. Both boys and girls with ADHD were characterized by 8 % (p = 0.016) lower serum Zn levels and 10 % (p = 0.049) higher Cu/Zn values when compared to neurotypical girls. Boys with ADHD also had significantly higher Cu/Zn, exceeding the respective control values by 12 % (p = 0.021), predominantly due to a 7 % (p = 0.035) decrease in serum Zn. Serum Mg levels were also found to be significantly lower than those in neurotypical children by 5 % (p = 0.007). In adjusted regression models serum Cr (β=-0.234; p = 0.009) and Cu/Zn (β = 0.245; p = 0.029) values were significantly associated with ADHD, respectively. Two-way ANOVA revealed a significant impact of ADHD on Cr, Mg, Zn, and Cu/Zn, whereas age was associated with Cu, I, Mg, Mo, and Cu/Zn, whereas gender accounted only for variability in serum Mn levels. Principal component analysis (PCA) also revealed significant contributions of Mg, Zn, and Cu/Zn values to ADHD variability. Conclusions: Hypothetically, the observed decrease of essential trace elements, namely Mg and Zn, and elevation of Cu/Zn may significantly contribute to the risk of ADHD or its severity and/or comorbidity.
Читать
тезис
|
Serum zinc, copper, zinc-to-copper ratio, and other essential elements and minerals in children with attention deficit/hyperactivity disorder (ADHD)
|
01.03.2020 |
Skalny A.
Mazaletskaya A.
Ajsuvakova O.
Bjørklund G.
Skalnaya M.
Chao J.
Chernova L.
Shakieva R.
Kopylov P.
Skalny A.
Tinkov A.
|
Journal of Trace Elements in Medicine and Biology |
10.1016/j.jtemb.2019.126445 |
0 |
Ссылка
© 2019 Elsevier GmbH Background: Essential trace elements and minerals play a significant role in neurodevelopment. Although certain studies demonstrated impaired essential trace element and mineral status in children with ADHD, the existing data are insufficient. The objective of the present study was to assess serum trace element and mineral levels in children with ADHD. Methods: Serum trace element and mineral levels in 68 children with ADHD and 68 neurotypical controls were assessed using ICP-MS at NexION 300D (PerkinElmer Inc., USA) equipped with ESI SC-2 DX4 autosampler (Elemental Scientific Inc., USA). Results: Serum Cr, Mg, and Zn levels in children with ADHD were 21 % (p = 0.010), 4 % (p = 0.005), and 7 % (p = 0. 001) lower as compared to the healthy controls, respectively. In turn, serum Cu/Zn values were 11 % higher than those in the control group. Age and gender had a significant impact on serum element levels in ADHD. Particularly, preschool children were characterized by significantly increased Cu (+8 %; p = 0.034), and Cu/Zn (+19 %; p < 0.001) values, whereas serum Zn (-9 %; p = 0.004) level was decreased. In primary school-aged children only 6 % (p = 0.007) lower Mg levels were observed. Both boys and girls with ADHD were characterized by 8 % (p = 0.016) lower serum Zn levels and 10 % (p = 0.049) higher Cu/Zn values when compared to neurotypical girls. Boys with ADHD also had significantly higher Cu/Zn, exceeding the respective control values by 12 % (p = 0.021), predominantly due to a 7 % (p = 0.035) decrease in serum Zn. Serum Mg levels were also found to be significantly lower than those in neurotypical children by 5 % (p = 0.007). In adjusted regression models serum Cr (β=-0.234; p = 0.009) and Cu/Zn (β = 0.245; p = 0.029) values were significantly associated with ADHD, respectively. Two-way ANOVA revealed a significant impact of ADHD on Cr, Mg, Zn, and Cu/Zn, whereas age was associated with Cu, I, Mg, Mo, and Cu/Zn, whereas gender accounted only for variability in serum Mn levels. Principal component analysis (PCA) also revealed significant contributions of Mg, Zn, and Cu/Zn values to ADHD variability. Conclusions: Hypothetically, the observed decrease of essential trace elements, namely Mg and Zn, and elevation of Cu/Zn may significantly contribute to the risk of ADHD or its severity and/or comorbidity.
Читать
тезис
|
Serum zinc, copper, zinc-to-copper ratio, and other essential elements and minerals in children with attention deficit/hyperactivity disorder (ADHD)
|
01.03.2020 |
Skalny A.
Mazaletskaya A.
Ajsuvakova O.
Bjørklund G.
Skalnaya M.
Chao J.
Chernova L.
Shakieva R.
Kopylov P.
Skalny A.
Tinkov A.
|
Journal of Trace Elements in Medicine and Biology |
10.1016/j.jtemb.2019.126445 |
0 |
Ссылка
© 2019 Elsevier GmbH Background: Essential trace elements and minerals play a significant role in neurodevelopment. Although certain studies demonstrated impaired essential trace element and mineral status in children with ADHD, the existing data are insufficient. The objective of the present study was to assess serum trace element and mineral levels in children with ADHD. Methods: Serum trace element and mineral levels in 68 children with ADHD and 68 neurotypical controls were assessed using ICP-MS at NexION 300D (PerkinElmer Inc., USA) equipped with ESI SC-2 DX4 autosampler (Elemental Scientific Inc., USA). Results: Serum Cr, Mg, and Zn levels in children with ADHD were 21 % (p = 0.010), 4 % (p = 0.005), and 7 % (p = 0. 001) lower as compared to the healthy controls, respectively. In turn, serum Cu/Zn values were 11 % higher than those in the control group. Age and gender had a significant impact on serum element levels in ADHD. Particularly, preschool children were characterized by significantly increased Cu (+8 %; p = 0.034), and Cu/Zn (+19 %; p < 0.001) values, whereas serum Zn (-9 %; p = 0.004) level was decreased. In primary school-aged children only 6 % (p = 0.007) lower Mg levels were observed. Both boys and girls with ADHD were characterized by 8 % (p = 0.016) lower serum Zn levels and 10 % (p = 0.049) higher Cu/Zn values when compared to neurotypical girls. Boys with ADHD also had significantly higher Cu/Zn, exceeding the respective control values by 12 % (p = 0.021), predominantly due to a 7 % (p = 0.035) decrease in serum Zn. Serum Mg levels were also found to be significantly lower than those in neurotypical children by 5 % (p = 0.007). In adjusted regression models serum Cr (β=-0.234; p = 0.009) and Cu/Zn (β = 0.245; p = 0.029) values were significantly associated with ADHD, respectively. Two-way ANOVA revealed a significant impact of ADHD on Cr, Mg, Zn, and Cu/Zn, whereas age was associated with Cu, I, Mg, Mo, and Cu/Zn, whereas gender accounted only for variability in serum Mn levels. Principal component analysis (PCA) also revealed significant contributions of Mg, Zn, and Cu/Zn values to ADHD variability. Conclusions: Hypothetically, the observed decrease of essential trace elements, namely Mg and Zn, and elevation of Cu/Zn may significantly contribute to the risk of ADHD or its severity and/or comorbidity.
Читать
тезис
|
Serum zinc, copper, zinc-to-copper ratio, and other essential elements and minerals in children with attention deficit/hyperactivity disorder (ADHD)
|
01.03.2020 |
Skalny A.
Mazaletskaya A.
Ajsuvakova O.
Bjørklund G.
Skalnaya M.
Chao J.
Chernova L.
Shakieva R.
Kopylov P.
Skalny A.
Tinkov A.
|
Journal of Trace Elements in Medicine and Biology |
10.1016/j.jtemb.2019.126445 |
0 |
Ссылка
© 2019 Elsevier GmbH Background: Essential trace elements and minerals play a significant role in neurodevelopment. Although certain studies demonstrated impaired essential trace element and mineral status in children with ADHD, the existing data are insufficient. The objective of the present study was to assess serum trace element and mineral levels in children with ADHD. Methods: Serum trace element and mineral levels in 68 children with ADHD and 68 neurotypical controls were assessed using ICP-MS at NexION 300D (PerkinElmer Inc., USA) equipped with ESI SC-2 DX4 autosampler (Elemental Scientific Inc., USA). Results: Serum Cr, Mg, and Zn levels in children with ADHD were 21 % (p = 0.010), 4 % (p = 0.005), and 7 % (p = 0. 001) lower as compared to the healthy controls, respectively. In turn, serum Cu/Zn values were 11 % higher than those in the control group. Age and gender had a significant impact on serum element levels in ADHD. Particularly, preschool children were characterized by significantly increased Cu (+8 %; p = 0.034), and Cu/Zn (+19 %; p < 0.001) values, whereas serum Zn (-9 %; p = 0.004) level was decreased. In primary school-aged children only 6 % (p = 0.007) lower Mg levels were observed. Both boys and girls with ADHD were characterized by 8 % (p = 0.016) lower serum Zn levels and 10 % (p = 0.049) higher Cu/Zn values when compared to neurotypical girls. Boys with ADHD also had significantly higher Cu/Zn, exceeding the respective control values by 12 % (p = 0.021), predominantly due to a 7 % (p = 0.035) decrease in serum Zn. Serum Mg levels were also found to be significantly lower than those in neurotypical children by 5 % (p = 0.007). In adjusted regression models serum Cr (β=-0.234; p = 0.009) and Cu/Zn (β = 0.245; p = 0.029) values were significantly associated with ADHD, respectively. Two-way ANOVA revealed a significant impact of ADHD on Cr, Mg, Zn, and Cu/Zn, whereas age was associated with Cu, I, Mg, Mo, and Cu/Zn, whereas gender accounted only for variability in serum Mn levels. Principal component analysis (PCA) also revealed significant contributions of Mg, Zn, and Cu/Zn values to ADHD variability. Conclusions: Hypothetically, the observed decrease of essential trace elements, namely Mg and Zn, and elevation of Cu/Zn may significantly contribute to the risk of ADHD or its severity and/or comorbidity.
Читать
тезис
|
Serum zinc, copper, zinc-to-copper ratio, and other essential elements and minerals in children with attention deficit/hyperactivity disorder (ADHD)
|
01.03.2020 |
Skalny A.
Mazaletskaya A.
Ajsuvakova O.
Bjørklund G.
Skalnaya M.
Chao J.
Chernova L.
Shakieva R.
Kopylov P.
Skalny A.
Tinkov A.
|
Journal of Trace Elements in Medicine and Biology |
10.1016/j.jtemb.2019.126445 |
0 |
Ссылка
© 2019 Elsevier GmbH Background: Essential trace elements and minerals play a significant role in neurodevelopment. Although certain studies demonstrated impaired essential trace element and mineral status in children with ADHD, the existing data are insufficient. The objective of the present study was to assess serum trace element and mineral levels in children with ADHD. Methods: Serum trace element and mineral levels in 68 children with ADHD and 68 neurotypical controls were assessed using ICP-MS at NexION 300D (PerkinElmer Inc., USA) equipped with ESI SC-2 DX4 autosampler (Elemental Scientific Inc., USA). Results: Serum Cr, Mg, and Zn levels in children with ADHD were 21 % (p = 0.010), 4 % (p = 0.005), and 7 % (p = 0. 001) lower as compared to the healthy controls, respectively. In turn, serum Cu/Zn values were 11 % higher than those in the control group. Age and gender had a significant impact on serum element levels in ADHD. Particularly, preschool children were characterized by significantly increased Cu (+8 %; p = 0.034), and Cu/Zn (+19 %; p < 0.001) values, whereas serum Zn (-9 %; p = 0.004) level was decreased. In primary school-aged children only 6 % (p = 0.007) lower Mg levels were observed. Both boys and girls with ADHD were characterized by 8 % (p = 0.016) lower serum Zn levels and 10 % (p = 0.049) higher Cu/Zn values when compared to neurotypical girls. Boys with ADHD also had significantly higher Cu/Zn, exceeding the respective control values by 12 % (p = 0.021), predominantly due to a 7 % (p = 0.035) decrease in serum Zn. Serum Mg levels were also found to be significantly lower than those in neurotypical children by 5 % (p = 0.007). In adjusted regression models serum Cr (β=-0.234; p = 0.009) and Cu/Zn (β = 0.245; p = 0.029) values were significantly associated with ADHD, respectively. Two-way ANOVA revealed a significant impact of ADHD on Cr, Mg, Zn, and Cu/Zn, whereas age was associated with Cu, I, Mg, Mo, and Cu/Zn, whereas gender accounted only for variability in serum Mn levels. Principal component analysis (PCA) also revealed significant contributions of Mg, Zn, and Cu/Zn values to ADHD variability. Conclusions: Hypothetically, the observed decrease of essential trace elements, namely Mg and Zn, and elevation of Cu/Zn may significantly contribute to the risk of ADHD or its severity and/or comorbidity.
Читать
тезис
|