Parkinson's disease and pesticides: Are microRNAs the missing link?
|
20.11.2020 |
Aloizou A.M.
Siokas V.
Sapouni E.M.
Sita N.
Liampas I.
Brotis A.G.
Rakitskii V.N.
Burykina T.I.
Aschner M.
Bogdanos D.P.
Tsatsakis A.
Hadjigeorgiou G.M.
Dardiotis E.
|
Science of the Total Environment |
10.1016/j.scitotenv.2020.140591 |
0 |
Ссылка
© 2020 Elsevier B.V. Parkinson's disease (PD) is a common neurodegenerative disorder that leads to significant morbidity and decline in the quality of life. It develops due to loss of dopaminergic neurons in the substantia nigra pars compacta, and among its pathogenic factors oxidative stress plays a critical role in disease progression. Pesticides are a broad class of chemicals widely used in agriculture and households for the protection of crops from insects and fungi. Several of them have been incriminated as risk factors for PD, but the underlying mechanisms have yet to be fully understood. MicroRNAs (miRNAs) are small, non-coding RNA molecules that play an important role in regulating mRNA translation and protein synthesis. miRNA levels have been shown to be affected in several diseases as well. Since the studies on the association between pesticides and PD have yet to reach definitive conclusions, here we review recent evidence on deregulated microRNAs upon pesticide exposure, and attempt to find an overlap between miRNAs deregulated in PD and pesticides, as a missing link between the two, and enhance future research in this direction.
Читать
тезис
|
Behavioral impacts of a mixture of six pesticides on rats
|
20.07.2020 |
Sergievich A.A.
Khoroshikh P.P.
Artemenko A.F.
Zakharenko A.M.
Chaika V.V.
Kodintsev V.V.
Stroeva O.A.
Lenda E.G.
Tsatsakis A.
Burykina T.I.
Agathokleous E.
Kostoff R.N.
Zlatian O.
Docea A.O.
Golokhvast K.S.
|
Science of the Total Environment |
10.1016/j.scitotenv.2020.138491 |
0 |
Ссылка
© 2020 Elsevier B.V. Pesticides can potentially contribute to the development of numerous neurodegenerative diseases. This study evaluates the effects of a six-pesticide mixture at doses around the no-observed-adverse-effectlevels (0 × NOAEL, control) and 0.25, 1 and 5 × NOAEL on behavior of Wistar rats. After 3, 6 and 12 months, rats were observed for neurobehavioral changes using the techniques of elevated plus maze and universal problemchamber, and the experiment was conducted thrice. The 3-month exposure revealed a decrease in the cognitive ability at the dose of 5 × NOAEL, and a dose-dependent research activity and anxiety. The 6-month exposurerevealed non-monotonic effects on the cognitive ability, with a decrease by 0.25 and 5 × NOAEL, as well as non-monotonic effects on anxiety, withan increase by 0.25 and 1 × NOAEL. A decrease was also observed in research activity at 5 × NOAEL. However, the 12-month exposure resulted to an increase in cognitive ability by 0.25 × NOAEL and in anxiety by 1 × NOAEL, as well as to a dose-dependent research activity. Repeating the trial showed that the cognitive ability increased from one trial to another, while the researching activity decreased and the anxiety increased by 0× NOAEL. In the groups exposed to pesticides mixture, the trends were different, showing that the exposure to pesticides combined with repeated trials, also influence the response of the animals. The resultsdemonstrate the occurrence of several dose-dependent behavioral responses, with negative effects occurring at doses that are considered safe. This study provides novel insights about time-dependent mixtures biology, and an important perspective to consider when conducting risk assessments.
Читать
тезис
|
Pesticides, cognitive functions and dementia: A review
|
15.06.2020 |
Aloizou A.M.
Siokas V.
Vogiatzi C.
Peristeri E.
Docea A.O.
Petrakis D.
Provatas A.
Folia V.
Chalkia C.
Vinceti M.
Wilks M.
Izotov B.N.
Tsatsakis A.
Bogdanos D.P.
Dardiotis E.
|
Toxicology Letters |
10.1016/j.toxlet.2020.03.005 |
0 |
Ссылка
© 2020 Elsevier B.V. Pesticides are widely-used chemicals commonly applied in agriculture for the protection of crops from pests. Depending on the class of pesticides, the specific substances may have a specific set of adverse effects on humans, especially in cases of acute poisoning. In past years, evidence regarding sequelae of chronic, low-level exposure has been accumulating. Cognitive impairment and dementia heavily affect a person's quality of life and scientific data has been hinting towards an association between them and antecedent chronic pesticide exposure. Here, we reviewed animal and human studies exploring the association between pesticide exposure, cognition and dementia. Additionally, we present potential mechanisms through which pesticides may act neurotoxically and lead to neurodegeneration. Study designs rarely presented homogeneity and the estimation of the exposure to pesticides has been most frequently performed without measuring the synergic effects and the possible interactions between the toxicants within mixtures, and also overlooking low exposures to environmental toxicants. It is possible that a Real-Life Risk Simulation approach would represent a robust alternative for future studies, so that the safe exposure limits and the net risk that pesticides confer to impaired cognitive function can be examined. Previous studies that evaluated the effect of low dose chronic exposure to mixtures of pesticides and other chemicals intending to simulate real life exposure scenarios showed that hermetic neurobehavioral effects can appear after mixture exposure at doses considered safe for individual compounds and these effects can be exacerbated by a coexistence with specific conditions such as vitamin deficiency. However, there is an overall indication, derived from both epidemiologic and laboratory evidence, supporting an association between exposure to neurotoxic pesticides and cognitive dysfunction, dementia and Alzheimer's disease.
Читать
тезис
|
Pesticides, cognitive functions and dementia: A review
|
15.06.2020 |
Aloizou A.M.
Siokas V.
Vogiatzi C.
Peristeri E.
Docea A.O.
Petrakis D.
Provatas A.
Folia V.
Chalkia C.
Vinceti M.
Wilks M.
Izotov B.N.
Tsatsakis A.
Bogdanos D.P.
Dardiotis E.
|
Toxicology Letters |
10.1016/j.toxlet.2020.03.005 |
0 |
Ссылка
© 2020 Elsevier B.V. Pesticides are widely-used chemicals commonly applied in agriculture for the protection of crops from pests. Depending on the class of pesticides, the specific substances may have a specific set of adverse effects on humans, especially in cases of acute poisoning. In past years, evidence regarding sequelae of chronic, low-level exposure has been accumulating. Cognitive impairment and dementia heavily affect a person's quality of life and scientific data has been hinting towards an association between them and antecedent chronic pesticide exposure. Here, we reviewed animal and human studies exploring the association between pesticide exposure, cognition and dementia. Additionally, we present potential mechanisms through which pesticides may act neurotoxically and lead to neurodegeneration. Study designs rarely presented homogeneity and the estimation of the exposure to pesticides has been most frequently performed without measuring the synergic effects and the possible interactions between the toxicants within mixtures, and also overlooking low exposures to environmental toxicants. It is possible that a Real-Life Risk Simulation approach would represent a robust alternative for future studies, so that the safe exposure limits and the net risk that pesticides confer to impaired cognitive function can be examined. Previous studies that evaluated the effect of low dose chronic exposure to mixtures of pesticides and other chemicals intending to simulate real life exposure scenarios showed that hermetic neurobehavioral effects can appear after mixture exposure at doses considered safe for individual compounds and these effects can be exacerbated by a coexistence with specific conditions such as vitamin deficiency. However, there is an overall indication, derived from both epidemiologic and laboratory evidence, supporting an association between exposure to neurotoxic pesticides and cognitive dysfunction, dementia and Alzheimer's disease.
Читать
тезис
|