Environmental influence on neurodevelopmental disorders: Potential association of heavy metal exposure and autism
|
01.12.2020 |
Ijomone O.M.
Olung N.F.
Akingbade G.T.
Okoh C.O.A.
Aschner M.
|
Journal of Trace Elements in Medicine and Biology |
10.1016/j.jtemb.2020.126638 |
0 |
Ссылка
© 2020 Elsevier GmbH Environmental factors have been severally established to play major roles in the pathogenesis of neurodevelopmental disorders including autism spectrum disorder (ASD). ASD is a neurodevelopmental disorder that is associated with symptoms that reduce the quality of life of affected individuals such as social interaction deficit, cognitive impairment, intellectual disabilities, restricted and repetitive behavioural patterns. ASD pathogenesis has been associated with environmental and genetic factors that alter physiologic processes during development. Here, we review literatures highlighting the environmental impact on neurodevelopmental disorders, and mechanisms by which environmental toxins may influence neurodevelopment. Furthermore, this review discusses reports highlighting neurotoxic metals (specifically, lead, mercury, cadmium, nickel and manganese) as environmental risk factors in the aetiology of ASD. This work, thus suggests that improving the environment could be vital in the management of ASD.
Читать
тезис
|
Parkinson's disease and pesticides: Are microRNAs the missing link?
|
20.11.2020 |
Aloizou A.M.
Siokas V.
Sapouni E.M.
Sita N.
Liampas I.
Brotis A.G.
Rakitskii V.N.
Burykina T.I.
Aschner M.
Bogdanos D.P.
Tsatsakis A.
Hadjigeorgiou G.M.
Dardiotis E.
|
Science of the Total Environment |
10.1016/j.scitotenv.2020.140591 |
0 |
Ссылка
© 2020 Elsevier B.V. Parkinson's disease (PD) is a common neurodegenerative disorder that leads to significant morbidity and decline in the quality of life. It develops due to loss of dopaminergic neurons in the substantia nigra pars compacta, and among its pathogenic factors oxidative stress plays a critical role in disease progression. Pesticides are a broad class of chemicals widely used in agriculture and households for the protection of crops from insects and fungi. Several of them have been incriminated as risk factors for PD, but the underlying mechanisms have yet to be fully understood. MicroRNAs (miRNAs) are small, non-coding RNA molecules that play an important role in regulating mRNA translation and protein synthesis. miRNA levels have been shown to be affected in several diseases as well. Since the studies on the association between pesticides and PD have yet to reach definitive conclusions, here we review recent evidence on deregulated microRNAs upon pesticide exposure, and attempt to find an overlap between miRNAs deregulated in PD and pesticides, as a missing link between the two, and enhance future research in this direction.
Читать
тезис
|
The effects of manganese overexposure on brain health
|
01.05.2020 |
Miah M.
Ijomone O.
Okoh C.
Ijomone O.
Akingbade G.
Ke T.
Krum B.
da Cunha Martins A.
Akinyemi A.
Aranoff N.
Antunes Soares F.
Bowman A.
Aschner M.
|
Neurochemistry International |
10.1016/j.neuint.2020.104688 |
0 |
Ссылка
© 2020 Elsevier Ltd Manganese (Mn) is the twelfth most abundant element on the earth and an essential metal to human health. Mn is present at low concentrations in a variety of dietary sources, which provides adequate Mn content to sustain support various physiological processes in the human body. However, with the rise of Mn utility in a variety of industries, there is an increased risk of overexposure to this transition metal, which can have neurotoxic consequences. This risk includes occupational exposure of Mn to workers as well as overall increased Mn pollution affecting the general public. Here, we review exposure due to air pollution and inhalation in industrial settings; we also delve into the toxic effects of manganese on the brain such as oxidative stress, inflammatory response and transporter dysregulation. Additionally, we summarize current understandings underlying the mechanisms of Mn toxicity.
Читать
тезис
|
The effects of manganese overexposure on brain health
|
01.05.2020 |
Miah M.
Ijomone O.
Okoh C.
Ijomone O.
Akingbade G.
Ke T.
Krum B.
da Cunha Martins A.
Akinyemi A.
Aranoff N.
Antunes Soares F.
Bowman A.
Aschner M.
|
Neurochemistry International |
10.1016/j.neuint.2020.104688 |
0 |
Ссылка
© 2020 Elsevier Ltd Manganese (Mn) is the twelfth most abundant element on the earth and an essential metal to human health. Mn is present at low concentrations in a variety of dietary sources, which provides adequate Mn content to sustain support various physiological processes in the human body. However, with the rise of Mn utility in a variety of industries, there is an increased risk of overexposure to this transition metal, which can have neurotoxic consequences. This risk includes occupational exposure of Mn to workers as well as overall increased Mn pollution affecting the general public. Here, we review exposure due to air pollution and inhalation in industrial settings; we also delve into the toxic effects of manganese on the brain such as oxidative stress, inflammatory response and transporter dysregulation. Additionally, we summarize current understandings underlying the mechanisms of Mn toxicity.
Читать
тезис
|
The effects of manganese overexposure on brain health
|
01.05.2020 |
Miah M.
Ijomone O.
Okoh C.
Ijomone O.
Akingbade G.
Ke T.
Krum B.
da Cunha Martins A.
Akinyemi A.
Aranoff N.
Antunes Soares F.
Bowman A.
Aschner M.
|
Neurochemistry International |
10.1016/j.neuint.2020.104688 |
0 |
Ссылка
© 2020 Elsevier Ltd Manganese (Mn) is the twelfth most abundant element on the earth and an essential metal to human health. Mn is present at low concentrations in a variety of dietary sources, which provides adequate Mn content to sustain support various physiological processes in the human body. However, with the rise of Mn utility in a variety of industries, there is an increased risk of overexposure to this transition metal, which can have neurotoxic consequences. This risk includes occupational exposure of Mn to workers as well as overall increased Mn pollution affecting the general public. Here, we review exposure due to air pollution and inhalation in industrial settings; we also delve into the toxic effects of manganese on the brain such as oxidative stress, inflammatory response and transporter dysregulation. Additionally, we summarize current understandings underlying the mechanisms of Mn toxicity.
Читать
тезис
|