New 20-hydroxycholesterol-like compounds with fluorescent NBD or alkyne labels: Synthesis, in silico interactions with proteins and uptake by yeast cells
|
01.03.2020 |
Faletrov Y.
Efimova V.
Horetski M.
Tugaeva K.
Frolova N.
Lin Q.
Isaeva L.
Rubtsov M.
Sluchanko N.
Novikova L.
Shkumatov V.
|
Chemistry and Physics of Lipids |
10.1016/j.chemphyslip.2019.104850 |
0 |
Ссылка
© 2019 Elsevier B.V. 20-hydroxycholesterol is a signaling oxysterol with immunomodulating functions and, thus, structural analogues with reporter capabilities could be useful for studying and modulating the cellular processes concerned. We have synthesized three new 20-hydroxycholesterol-like pregn-5-en-3β-ol derivatives with fluorescent 7-nitrobenzofurazan (NBD) or Raman-sensitive alkyne labels in their side-chains. In silico computations demonstrated the compounds possess good membrane permeability and can bind within active sites of known 20-hydroxycholesterol targets (e.g. Smoothened and yeast Osh4) and some other sterol-binding proteins (human LXRβ and STARD1; yeast START-kins Lam4S2 and Lam2S2). Having found good predicted membrane permeability and binding to some yeast proteins, we tested the compounds on microorganisms. Fluorescent microscopy indicated the uptake of the steroids by both Saccharomyces cerevisiae and Yarrowia lipolytica, whereas only S. cerevisiae demonstrated conversion of the compounds into 3-O-acetates, likely because 3-O-acetyltransferase Atf2p is present only in its genome. The new compounds provide new options to study the uptake, intracellular distribution and metabolism of sterols in yeast cells as well as might be used as ligands for sterol-binding proteins.
Читать
тезис
|
New 20-hydroxycholesterol-like compounds with fluorescent NBD or alkyne labels: Synthesis, in silico interactions with proteins and uptake by yeast cells
|
01.03.2020 |
Faletrov Y.
Efimova V.
Horetski M.
Tugaeva K.
Frolova N.
Lin Q.
Isaeva L.
Rubtsov M.
Sluchanko N.
Novikova L.
Shkumatov V.
|
Chemistry and Physics of Lipids |
10.1016/j.chemphyslip.2019.104850 |
0 |
Ссылка
© 2019 Elsevier B.V. 20-hydroxycholesterol is a signaling oxysterol with immunomodulating functions and, thus, structural analogues with reporter capabilities could be useful for studying and modulating the cellular processes concerned. We have synthesized three new 20-hydroxycholesterol-like pregn-5-en-3β-ol derivatives with fluorescent 7-nitrobenzofurazan (NBD) or Raman-sensitive alkyne labels in their side-chains. In silico computations demonstrated the compounds possess good membrane permeability and can bind within active sites of known 20-hydroxycholesterol targets (e.g. Smoothened and yeast Osh4) and some other sterol-binding proteins (human LXRβ and STARD1; yeast START-kins Lam4S2 and Lam2S2). Having found good predicted membrane permeability and binding to some yeast proteins, we tested the compounds on microorganisms. Fluorescent microscopy indicated the uptake of the steroids by both Saccharomyces cerevisiae and Yarrowia lipolytica, whereas only S. cerevisiae demonstrated conversion of the compounds into 3-O-acetates, likely because 3-O-acetyltransferase Atf2p is present only in its genome. The new compounds provide new options to study the uptake, intracellular distribution and metabolism of sterols in yeast cells as well as might be used as ligands for sterol-binding proteins.
Читать
тезис
|
New 20-hydroxycholesterol-like compounds with fluorescent NBD or alkyne labels: Synthesis, in silico interactions with proteins and uptake by yeast cells
|
01.03.2020 |
Faletrov Y.
Efimova V.
Horetski M.
Tugaeva K.
Frolova N.
Lin Q.
Isaeva L.
Rubtsov M.
Sluchanko N.
Novikova L.
Shkumatov V.
|
Chemistry and Physics of Lipids |
10.1016/j.chemphyslip.2019.104850 |
0 |
Ссылка
© 2019 Elsevier B.V. 20-hydroxycholesterol is a signaling oxysterol with immunomodulating functions and, thus, structural analogues with reporter capabilities could be useful for studying and modulating the cellular processes concerned. We have synthesized three new 20-hydroxycholesterol-like pregn-5-en-3β-ol derivatives with fluorescent 7-nitrobenzofurazan (NBD) or Raman-sensitive alkyne labels in their side-chains. In silico computations demonstrated the compounds possess good membrane permeability and can bind within active sites of known 20-hydroxycholesterol targets (e.g. Smoothened and yeast Osh4) and some other sterol-binding proteins (human LXRβ and STARD1; yeast START-kins Lam4S2 and Lam2S2). Having found good predicted membrane permeability and binding to some yeast proteins, we tested the compounds on microorganisms. Fluorescent microscopy indicated the uptake of the steroids by both Saccharomyces cerevisiae and Yarrowia lipolytica, whereas only S. cerevisiae demonstrated conversion of the compounds into 3-O-acetates, likely because 3-O-acetyltransferase Atf2p is present only in its genome. The new compounds provide new options to study the uptake, intracellular distribution and metabolism of sterols in yeast cells as well as might be used as ligands for sterol-binding proteins.
Читать
тезис
|
New 20-hydroxycholesterol-like compounds with fluorescent NBD or alkyne labels: Synthesis, in silico interactions with proteins and uptake by yeast cells
|
01.03.2020 |
Faletrov Y.
Efimova V.
Horetski M.
Tugaeva K.
Frolova N.
Lin Q.
Isaeva L.
Rubtsov M.
Sluchanko N.
Novikova L.
Shkumatov V.
|
Chemistry and Physics of Lipids |
10.1016/j.chemphyslip.2019.104850 |
0 |
Ссылка
© 2019 Elsevier B.V. 20-hydroxycholesterol is a signaling oxysterol with immunomodulating functions and, thus, structural analogues with reporter capabilities could be useful for studying and modulating the cellular processes concerned. We have synthesized three new 20-hydroxycholesterol-like pregn-5-en-3β-ol derivatives with fluorescent 7-nitrobenzofurazan (NBD) or Raman-sensitive alkyne labels in their side-chains. In silico computations demonstrated the compounds possess good membrane permeability and can bind within active sites of known 20-hydroxycholesterol targets (e.g. Smoothened and yeast Osh4) and some other sterol-binding proteins (human LXRβ and STARD1; yeast START-kins Lam4S2 and Lam2S2). Having found good predicted membrane permeability and binding to some yeast proteins, we tested the compounds on microorganisms. Fluorescent microscopy indicated the uptake of the steroids by both Saccharomyces cerevisiae and Yarrowia lipolytica, whereas only S. cerevisiae demonstrated conversion of the compounds into 3-O-acetates, likely because 3-O-acetyltransferase Atf2p is present only in its genome. The new compounds provide new options to study the uptake, intracellular distribution and metabolism of sterols in yeast cells as well as might be used as ligands for sterol-binding proteins.
Читать
тезис
|
New 20-hydroxycholesterol-like compounds with fluorescent NBD or alkyne labels: Synthesis, in silico interactions with proteins and uptake by yeast cells
|
01.03.2020 |
Faletrov Y.
Efimova V.
Horetski M.
Tugaeva K.
Frolova N.
Lin Q.
Isaeva L.
Rubtsov M.
Sluchanko N.
Novikova L.
Shkumatov V.
|
Chemistry and Physics of Lipids |
10.1016/j.chemphyslip.2019.104850 |
0 |
Ссылка
© 2019 Elsevier B.V. 20-hydroxycholesterol is a signaling oxysterol with immunomodulating functions and, thus, structural analogues with reporter capabilities could be useful for studying and modulating the cellular processes concerned. We have synthesized three new 20-hydroxycholesterol-like pregn-5-en-3β-ol derivatives with fluorescent 7-nitrobenzofurazan (NBD) or Raman-sensitive alkyne labels in their side-chains. In silico computations demonstrated the compounds possess good membrane permeability and can bind within active sites of known 20-hydroxycholesterol targets (e.g. Smoothened and yeast Osh4) and some other sterol-binding proteins (human LXRβ and STARD1; yeast START-kins Lam4S2 and Lam2S2). Having found good predicted membrane permeability and binding to some yeast proteins, we tested the compounds on microorganisms. Fluorescent microscopy indicated the uptake of the steroids by both Saccharomyces cerevisiae and Yarrowia lipolytica, whereas only S. cerevisiae demonstrated conversion of the compounds into 3-O-acetates, likely because 3-O-acetyltransferase Atf2p is present only in its genome. The new compounds provide new options to study the uptake, intracellular distribution and metabolism of sterols in yeast cells as well as might be used as ligands for sterol-binding proteins.
Читать
тезис
|
New 20-hydroxycholesterol-like compounds with fluorescent NBD or alkyne labels: Synthesis, in silico interactions with proteins and uptake by yeast cells
|
01.03.2020 |
Faletrov Y.
Efimova V.
Horetski M.
Tugaeva K.
Frolova N.
Lin Q.
Isaeva L.
Rubtsov M.
Sluchanko N.
Novikova L.
Shkumatov V.
|
Chemistry and Physics of Lipids |
10.1016/j.chemphyslip.2019.104850 |
0 |
Ссылка
© 2019 Elsevier B.V. 20-hydroxycholesterol is a signaling oxysterol with immunomodulating functions and, thus, structural analogues with reporter capabilities could be useful for studying and modulating the cellular processes concerned. We have synthesized three new 20-hydroxycholesterol-like pregn-5-en-3β-ol derivatives with fluorescent 7-nitrobenzofurazan (NBD) or Raman-sensitive alkyne labels in their side-chains. In silico computations demonstrated the compounds possess good membrane permeability and can bind within active sites of known 20-hydroxycholesterol targets (e.g. Smoothened and yeast Osh4) and some other sterol-binding proteins (human LXRβ and STARD1; yeast START-kins Lam4S2 and Lam2S2). Having found good predicted membrane permeability and binding to some yeast proteins, we tested the compounds on microorganisms. Fluorescent microscopy indicated the uptake of the steroids by both Saccharomyces cerevisiae and Yarrowia lipolytica, whereas only S. cerevisiae demonstrated conversion of the compounds into 3-O-acetates, likely because 3-O-acetyltransferase Atf2p is present only in its genome. The new compounds provide new options to study the uptake, intracellular distribution and metabolism of sterols in yeast cells as well as might be used as ligands for sterol-binding proteins.
Читать
тезис
|
New 20-hydroxycholesterol-like compounds with fluorescent NBD or alkyne labels: Synthesis, in silico interactions with proteins and uptake by yeast cells
|
01.03.2020 |
Faletrov Y.
Efimova V.
Horetski M.
Tugaeva K.
Frolova N.
Lin Q.
Isaeva L.
Rubtsov M.
Sluchanko N.
Novikova L.
Shkumatov V.
|
Chemistry and Physics of Lipids |
10.1016/j.chemphyslip.2019.104850 |
0 |
Ссылка
© 2019 Elsevier B.V. 20-hydroxycholesterol is a signaling oxysterol with immunomodulating functions and, thus, structural analogues with reporter capabilities could be useful for studying and modulating the cellular processes concerned. We have synthesized three new 20-hydroxycholesterol-like pregn-5-en-3β-ol derivatives with fluorescent 7-nitrobenzofurazan (NBD) or Raman-sensitive alkyne labels in their side-chains. In silico computations demonstrated the compounds possess good membrane permeability and can bind within active sites of known 20-hydroxycholesterol targets (e.g. Smoothened and yeast Osh4) and some other sterol-binding proteins (human LXRβ and STARD1; yeast START-kins Lam4S2 and Lam2S2). Having found good predicted membrane permeability and binding to some yeast proteins, we tested the compounds on microorganisms. Fluorescent microscopy indicated the uptake of the steroids by both Saccharomyces cerevisiae and Yarrowia lipolytica, whereas only S. cerevisiae demonstrated conversion of the compounds into 3-O-acetates, likely because 3-O-acetyltransferase Atf2p is present only in its genome. The new compounds provide new options to study the uptake, intracellular distribution and metabolism of sterols in yeast cells as well as might be used as ligands for sterol-binding proteins.
Читать
тезис
|
Ligand-binding properties and catalytic activity of the purified human 24-hydroxycholesterol 7α-hydroxylase, CYP39A1
|
01.10.2019 |
Grabovec I.
Smolskaya S.
Baranovsky A.
Zhabinskii V.
Dichenko Y.
Shabunya P.
Usanov S.
Strushkevich N.
|
Journal of Steroid Biochemistry and Molecular Biology |
10.1016/j.jsbmb.2019.105416 |
0 |
Ссылка
© 2019 Elsevier Ltd Oxysterols are derivatives of cholesterol and biologically active molecules that are involved in a number of functions, including cholesterol homeostasis, immune response, embryogenic development and pathophysiology of neurodegenerative diseases. Enzymes catalyzing their synthesis and metabolism are of particular interest as potential or evaluated drug targets. Here we report for the first time biochemical analysis of purified human oxysterol 7α-hydroxylase selective for 24-hydroxycholesterol. Binding analyses indicated a tight binding of the oxysterols and estrone. Ligand screening revealed that CYP39A1 binds with high affinity antifungal drugs and prostate cancer drug galeterone (TOK-001). Site-directed mutagenesis of conserved Asn residue in the active site revealed its crucial role for protein folding and heme incorporation. Developed protocol for expression and purification enables further investigation of this hepatic enzyme as off-target in development of specific drugs targeting cytochrome P450 enzymes.
Читать
тезис
|