Promoted chondrogenesis of hMCSs with controlled release of TGF-β3 via microfluidics synthesized alginate nanogels
|
01.02.2020 |
Mahmoudi Z.
Mohammadnejad J.
Razavi Bazaz S.
Abouei Mehrizi A.
Saidijam M.
Dinarvand R.
Ebrahimi Warkiani M.
Soleimani M.
|
Carbohydrate Polymers |
10.1016/j.carbpol.2019.115551 |
0 |
Ссылка
© 2019 The field of cartilage tissue engineering has been evolved in the last decade and a myriad of scaffolding biomaterials and bioactive agents have been proposed. Controlled release of growth factors encapsulated in the polymeric nanomaterials has been of interest notably for the repair of damaged articular cartilage. Here, we proposed an on-chip hydrodynamic flow focusing microfluidic approach for synthesis of alginate nanogels loaded with the transforming growth factor beta 3 (TGF-β3) through an ionic gelation method in order to achieve precise release profile of these bioactive agents during chondrogenic differentiation of mesenchymal stem cells (MSCs). Alginate nanogels with adjustable sizes were synthesized by fine-tuning the flow rate ratio (FRR) in the microfluidic device consisting of cross-junction microchannels. The result of present study showed that the proposed approach can be a promising tool to synthesize bioactive -loaded polymeric nanogels for applications in drug delivery and tissue engineering.
Читать
тезис
|
Promoted chondrogenesis of hMCSs with controlled release of TGF-β3 via microfluidics synthesized alginate nanogels
|
01.02.2020 |
Mahmoudi Z.
Mohammadnejad J.
Razavi Bazaz S.
Abouei Mehrizi A.
Saidijam M.
Dinarvand R.
Ebrahimi Warkiani M.
Soleimani M.
|
Carbohydrate Polymers |
10.1016/j.carbpol.2019.115551 |
0 |
Ссылка
© 2019 The field of cartilage tissue engineering has been evolved in the last decade and a myriad of scaffolding biomaterials and bioactive agents have been proposed. Controlled release of growth factors encapsulated in the polymeric nanomaterials has been of interest notably for the repair of damaged articular cartilage. Here, we proposed an on-chip hydrodynamic flow focusing microfluidic approach for synthesis of alginate nanogels loaded with the transforming growth factor beta 3 (TGF-β3) through an ionic gelation method in order to achieve precise release profile of these bioactive agents during chondrogenic differentiation of mesenchymal stem cells (MSCs). Alginate nanogels with adjustable sizes were synthesized by fine-tuning the flow rate ratio (FRR) in the microfluidic device consisting of cross-junction microchannels. The result of present study showed that the proposed approach can be a promising tool to synthesize bioactive -loaded polymeric nanogels for applications in drug delivery and tissue engineering.
Читать
тезис
|
Promoted chondrogenesis of hMCSs with controlled release of TGF-β3 via microfluidics synthesized alginate nanogels
|
01.02.2020 |
Mahmoudi Z.
Mohammadnejad J.
Razavi Bazaz S.
Abouei Mehrizi A.
Saidijam M.
Dinarvand R.
Ebrahimi Warkiani M.
Soleimani M.
|
Carbohydrate Polymers |
10.1016/j.carbpol.2019.115551 |
0 |
Ссылка
© 2019 The field of cartilage tissue engineering has been evolved in the last decade and a myriad of scaffolding biomaterials and bioactive agents have been proposed. Controlled release of growth factors encapsulated in the polymeric nanomaterials has been of interest notably for the repair of damaged articular cartilage. Here, we proposed an on-chip hydrodynamic flow focusing microfluidic approach for synthesis of alginate nanogels loaded with the transforming growth factor beta 3 (TGF-β3) through an ionic gelation method in order to achieve precise release profile of these bioactive agents during chondrogenic differentiation of mesenchymal stem cells (MSCs). Alginate nanogels with adjustable sizes were synthesized by fine-tuning the flow rate ratio (FRR) in the microfluidic device consisting of cross-junction microchannels. The result of present study showed that the proposed approach can be a promising tool to synthesize bioactive -loaded polymeric nanogels for applications in drug delivery and tissue engineering.
Читать
тезис
|
Promoted chondrogenesis of hMCSs with controlled release of TGF-β3 via microfluidics synthesized alginate nanogels
|
01.02.2020 |
Mahmoudi Z.
Mohammadnejad J.
Razavi Bazaz S.
Abouei Mehrizi A.
Saidijam M.
Dinarvand R.
Ebrahimi Warkiani M.
Soleimani M.
|
Carbohydrate Polymers |
10.1016/j.carbpol.2019.115551 |
0 |
Ссылка
© 2019 The field of cartilage tissue engineering has been evolved in the last decade and a myriad of scaffolding biomaterials and bioactive agents have been proposed. Controlled release of growth factors encapsulated in the polymeric nanomaterials has been of interest notably for the repair of damaged articular cartilage. Here, we proposed an on-chip hydrodynamic flow focusing microfluidic approach for synthesis of alginate nanogels loaded with the transforming growth factor beta 3 (TGF-β3) through an ionic gelation method in order to achieve precise release profile of these bioactive agents during chondrogenic differentiation of mesenchymal stem cells (MSCs). Alginate nanogels with adjustable sizes were synthesized by fine-tuning the flow rate ratio (FRR) in the microfluidic device consisting of cross-junction microchannels. The result of present study showed that the proposed approach can be a promising tool to synthesize bioactive -loaded polymeric nanogels for applications in drug delivery and tissue engineering.
Читать
тезис
|
Promoted chondrogenesis of hMCSs with controlled release of TGF-β3 via microfluidics synthesized alginate nanogels
|
01.02.2020 |
Mahmoudi Z.
Mohammadnejad J.
Razavi Bazaz S.
Abouei Mehrizi A.
Saidijam M.
Dinarvand R.
Ebrahimi Warkiani M.
Soleimani M.
|
Carbohydrate Polymers |
10.1016/j.carbpol.2019.115551 |
0 |
Ссылка
© 2019 The field of cartilage tissue engineering has been evolved in the last decade and a myriad of scaffolding biomaterials and bioactive agents have been proposed. Controlled release of growth factors encapsulated in the polymeric nanomaterials has been of interest notably for the repair of damaged articular cartilage. Here, we proposed an on-chip hydrodynamic flow focusing microfluidic approach for synthesis of alginate nanogels loaded with the transforming growth factor beta 3 (TGF-β3) through an ionic gelation method in order to achieve precise release profile of these bioactive agents during chondrogenic differentiation of mesenchymal stem cells (MSCs). Alginate nanogels with adjustable sizes were synthesized by fine-tuning the flow rate ratio (FRR) in the microfluidic device consisting of cross-junction microchannels. The result of present study showed that the proposed approach can be a promising tool to synthesize bioactive -loaded polymeric nanogels for applications in drug delivery and tissue engineering.
Читать
тезис
|
Promoted chondrogenesis of hMCSs with controlled release of TGF-β3 via microfluidics synthesized alginate nanogels
|
01.02.2020 |
Mahmoudi Z.
Mohammadnejad J.
Razavi Bazaz S.
Abouei Mehrizi A.
Saidijam M.
Dinarvand R.
Ebrahimi Warkiani M.
Soleimani M.
|
Carbohydrate Polymers |
10.1016/j.carbpol.2019.115551 |
0 |
Ссылка
© 2019 The field of cartilage tissue engineering has been evolved in the last decade and a myriad of scaffolding biomaterials and bioactive agents have been proposed. Controlled release of growth factors encapsulated in the polymeric nanomaterials has been of interest notably for the repair of damaged articular cartilage. Here, we proposed an on-chip hydrodynamic flow focusing microfluidic approach for synthesis of alginate nanogels loaded with the transforming growth factor beta 3 (TGF-β3) through an ionic gelation method in order to achieve precise release profile of these bioactive agents during chondrogenic differentiation of mesenchymal stem cells (MSCs). Alginate nanogels with adjustable sizes were synthesized by fine-tuning the flow rate ratio (FRR) in the microfluidic device consisting of cross-junction microchannels. The result of present study showed that the proposed approach can be a promising tool to synthesize bioactive -loaded polymeric nanogels for applications in drug delivery and tissue engineering.
Читать
тезис
|
Promoted chondrogenesis of hMCSs with controlled release of TGF-β3 via microfluidics synthesized alginate nanogels
|
01.02.2020 |
Mahmoudi Z.
Mohammadnejad J.
Razavi Bazaz S.
Abouei Mehrizi A.
Saidijam M.
Dinarvand R.
Ebrahimi Warkiani M.
Soleimani M.
|
Carbohydrate Polymers |
10.1016/j.carbpol.2019.115551 |
0 |
Ссылка
© 2019 The field of cartilage tissue engineering has been evolved in the last decade and a myriad of scaffolding biomaterials and bioactive agents have been proposed. Controlled release of growth factors encapsulated in the polymeric nanomaterials has been of interest notably for the repair of damaged articular cartilage. Here, we proposed an on-chip hydrodynamic flow focusing microfluidic approach for synthesis of alginate nanogels loaded with the transforming growth factor beta 3 (TGF-β3) through an ionic gelation method in order to achieve precise release profile of these bioactive agents during chondrogenic differentiation of mesenchymal stem cells (MSCs). Alginate nanogels with adjustable sizes were synthesized by fine-tuning the flow rate ratio (FRR) in the microfluidic device consisting of cross-junction microchannels. The result of present study showed that the proposed approach can be a promising tool to synthesize bioactive -loaded polymeric nanogels for applications in drug delivery and tissue engineering.
Читать
тезис
|
Physicochemical and Technical Studies of an Interpolymer Complex of Polymethyacrylic Acid and Polyethylene Glycol as the Base for Creating Matrix Systems
|
01.10.2018 |
Anurova M.
Demina N.
Bakhrushina E.
|
Pharmaceutical Chemistry Journal |
|
0 |
Ссылка
© 2018, Springer Science+Business Media, LLC, part of Springer Nature. The physicochemical and technological properties of an interpolymer complex of polymethyacrylic acid and polyethylene glycol, known under its commercial name “Polymer Carrier Composition” (FGUP Science Research Institute of Polymers, Russia), were studied. This polymer is an excipient substance used in the technology of solid dosage forms as a matrix former and as a film-forming agent for making long-acting and slow-release formulations. With the aim of widening the potential uses of the polymer carrier composition, the solubility of the polymer in aqueous solutions and organic solvents was studied, along with the technological and surfactant properties of the polymer; the critical gel-forming concentration was also determined. Experimental samples of tablets and oral gels of model substances with similar physicochemical properties were prepared, based on different concentrations of the Polymer Carrier Composition, and the technological, rheological, and biopharmaceutical properties of these were studied. The potential for using the polymer in both hard and soft dosage forms to obtain prolonged-release medicinal formulations is demonstrated.
Читать
тезис
|