Adsorption and photocatalytic performance of Au nanoparticles decorated porous Cu<inf>2</inf>O nanospheres under simulated solar light irradiation
|
15.04.2021 |
Zhao C.
Fu H.
Yang X.
Xiong S.
Han D.
An X.
|
Applied Surface Science |
10.1016/j.apsusc.2021.149014 |
0 |
Ссылка
© 2021 Elsevier B.V. In this work, pristine Cu2O and Au nanoparticle modified Cu2O (Au/Cu2O) spherical nanocomposites were prepared by a simple redox method at room temperature. The as-prepared Cu2O nanospheres with diameters of 150–200 nm show relatively large surface area. The dye removal abilities of the pure Cu2O and the Au/Cu2O nanocomposites were tested by evaluating their adsorption and photocatalytic activities towards different aromatic molecules (e.g., Congo red (CR), Methyl orange (MO), Methyl blue (MB), Rhodamine B (RhB)). The experimental results indicate that the Au/Cu2O nanocomposites exhibit much superior adsorption and photocatalytic properties to the pristine Cu2O nanospheres. Among the catalysts, 1 wt% Au/Cu2O nanocomposite shows the best removal abilities to various dyes. Besides, the removal abilities towards these dyes are quite different from each other. For deep understanding of the adsorption mechanism, molecular dynamics (MD) caculations were conducted to investigate the adsorption energy of the Cu2O spheres by simulating the porous structure and Au modification. The calculation results indicate that CR and MO are chemically adsorbed on the Cu2O materials while the adsorption of MB and RhB are physical adsorption, which are well consistent with the experimental results. This study demonstrates the porous Cu2O based nanocomposites are promising materials with high adsorption and solar light-photocatalytic performance. In the meanwhile, the underlying mechanism on the superior dye removal abilities of Au modified Cu2O nanospheres were systematically discussed.
Читать
тезис
|
The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy
|
15.02.2020 |
Gerasimenko A.
Ten G.
Ryabkin D.
Shcherbakova N.
Morozova E.
Ichkitidze L.
|
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy |
10.1016/j.saa.2019.117682 |
0 |
Ссылка
© 2019 Elsevier B.V. The results of the study of composites based on bovine serum albumin (BSA) and single-walled carbon nanotubes (SWCNT) are presented. Nanocomposites were created by evaporation of the water-albumin dispersion with nanotubes using diode laser with temperature control. Two types of nanotubes were used. SWCNT I were synthesized using the electric arc method, SWCNT II were synthesized using the gas phase method. SWCNT I had a diameter and length less than SWCNT II. The mechanism of interaction between BSA and SWCNT in solid nanocomposites is considered. An experimental and theoretical studies of the interaction between aspartic (Asp) and glutamic (Glu) amino acids located on the outer surface of BSA and nanotubes using of vibrational spectroscopy (Fourier-transform infrared (FTIR) and Raman spectroscopy) was carried out. The possibility of nanotubes functionalization by oxygen atoms of negative amino acid residues Asp and Glu, which are on the outer surface of BSA, is shown by molecular modeling. The formation of covalent bonds between BSA and SWCNT in nanocomposites with different concentrations of nanotubes (0.01, 0.1 and 1 g/l) was confirmed by vibrational spectra. The covalent interaction between BSA with SWCNT under the laser irradiation leads to the conformational changes in the secondary and tertiary structures of albumin. This is confirmed by a significant decrease in the intensity of the absorption bands in the high-frequency region. The calculation of the vibrational spectra of the three Glycine:Glycine, Glutamic acid:Threonine and Aspartic acid:Lysine complexes, which take into account hydrogen, ion-dipole and ion-ion bonds, showed that a disturbance in the intermolecular interaction between amino acid residues led to significant decrease in the intensity of absorption bands in the region of stretching vibrations bonds OH and NH. From the Raman spectra, it was found that a significant number of defects in SWCNT is caused by the covalent attachment of oxygen atoms to the graphene surface of nanotubes. An increase in the diameter of nanotubes (4 nm) has practically no effect on the absorption spectrum of nanocomposite, while measuring the concentration of SWCNT affects the FTIR spectra. This confirmed the hydrophobic interaction between BSA and SWCNT. Thus, it was shown that BSA solid nanocomposites with CNTs can interact either with the help of hydrophobic forces or with the formation of covalent bonds, which depends on the diameter of the used nanotubes. The viability of connective fibroblast tissue cells on nanocomposites with both types of SWCNT was demonstrated. It was found that nanocomposites based on SWCNT I provide slightly better compatibility of their structure with fibroblasts. It allows to achieve better cell adhesion to the nanocomposite surface. These criteria make extensive use of scaffold nanocomposites in biomedicine, depending on the requirements for their quality and application.
Читать
тезис
|
The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy
|
15.02.2020 |
Gerasimenko A.
Ten G.
Ryabkin D.
Shcherbakova N.
Morozova E.
Ichkitidze L.
|
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy |
10.1016/j.saa.2019.117682 |
0 |
Ссылка
© 2019 Elsevier B.V. The results of the study of composites based on bovine serum albumin (BSA) and single-walled carbon nanotubes (SWCNT) are presented. Nanocomposites were created by evaporation of the water-albumin dispersion with nanotubes using diode laser with temperature control. Two types of nanotubes were used. SWCNT I were synthesized using the electric arc method, SWCNT II were synthesized using the gas phase method. SWCNT I had a diameter and length less than SWCNT II. The mechanism of interaction between BSA and SWCNT in solid nanocomposites is considered. An experimental and theoretical studies of the interaction between aspartic (Asp) and glutamic (Glu) amino acids located on the outer surface of BSA and nanotubes using of vibrational spectroscopy (Fourier-transform infrared (FTIR) and Raman spectroscopy) was carried out. The possibility of nanotubes functionalization by oxygen atoms of negative amino acid residues Asp and Glu, which are on the outer surface of BSA, is shown by molecular modeling. The formation of covalent bonds between BSA and SWCNT in nanocomposites with different concentrations of nanotubes (0.01, 0.1 and 1 g/l) was confirmed by vibrational spectra. The covalent interaction between BSA with SWCNT under the laser irradiation leads to the conformational changes in the secondary and tertiary structures of albumin. This is confirmed by a significant decrease in the intensity of the absorption bands in the high-frequency region. The calculation of the vibrational spectra of the three Glycine:Glycine, Glutamic acid:Threonine and Aspartic acid:Lysine complexes, which take into account hydrogen, ion-dipole and ion-ion bonds, showed that a disturbance in the intermolecular interaction between amino acid residues led to significant decrease in the intensity of absorption bands in the region of stretching vibrations bonds OH and NH. From the Raman spectra, it was found that a significant number of defects in SWCNT is caused by the covalent attachment of oxygen atoms to the graphene surface of nanotubes. An increase in the diameter of nanotubes (4 nm) has practically no effect on the absorption spectrum of nanocomposite, while measuring the concentration of SWCNT affects the FTIR spectra. This confirmed the hydrophobic interaction between BSA and SWCNT. Thus, it was shown that BSA solid nanocomposites with CNTs can interact either with the help of hydrophobic forces or with the formation of covalent bonds, which depends on the diameter of the used nanotubes. The viability of connective fibroblast tissue cells on nanocomposites with both types of SWCNT was demonstrated. It was found that nanocomposites based on SWCNT I provide slightly better compatibility of their structure with fibroblasts. It allows to achieve better cell adhesion to the nanocomposite surface. These criteria make extensive use of scaffold nanocomposites in biomedicine, depending on the requirements for their quality and application.
Читать
тезис
|
The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy
|
15.02.2020 |
Gerasimenko A.
Ten G.
Ryabkin D.
Shcherbakova N.
Morozova E.
Ichkitidze L.
|
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy |
10.1016/j.saa.2019.117682 |
0 |
Ссылка
© 2019 Elsevier B.V. The results of the study of composites based on bovine serum albumin (BSA) and single-walled carbon nanotubes (SWCNT) are presented. Nanocomposites were created by evaporation of the water-albumin dispersion with nanotubes using diode laser with temperature control. Two types of nanotubes were used. SWCNT I were synthesized using the electric arc method, SWCNT II were synthesized using the gas phase method. SWCNT I had a diameter and length less than SWCNT II. The mechanism of interaction between BSA and SWCNT in solid nanocomposites is considered. An experimental and theoretical studies of the interaction between aspartic (Asp) and glutamic (Glu) amino acids located on the outer surface of BSA and nanotubes using of vibrational spectroscopy (Fourier-transform infrared (FTIR) and Raman spectroscopy) was carried out. The possibility of nanotubes functionalization by oxygen atoms of negative amino acid residues Asp and Glu, which are on the outer surface of BSA, is shown by molecular modeling. The formation of covalent bonds between BSA and SWCNT in nanocomposites with different concentrations of nanotubes (0.01, 0.1 and 1 g/l) was confirmed by vibrational spectra. The covalent interaction between BSA with SWCNT under the laser irradiation leads to the conformational changes in the secondary and tertiary structures of albumin. This is confirmed by a significant decrease in the intensity of the absorption bands in the high-frequency region. The calculation of the vibrational spectra of the three Glycine:Glycine, Glutamic acid:Threonine and Aspartic acid:Lysine complexes, which take into account hydrogen, ion-dipole and ion-ion bonds, showed that a disturbance in the intermolecular interaction between amino acid residues led to significant decrease in the intensity of absorption bands in the region of stretching vibrations bonds OH and NH. From the Raman spectra, it was found that a significant number of defects in SWCNT is caused by the covalent attachment of oxygen atoms to the graphene surface of nanotubes. An increase in the diameter of nanotubes (4 nm) has practically no effect on the absorption spectrum of nanocomposite, while measuring the concentration of SWCNT affects the FTIR spectra. This confirmed the hydrophobic interaction between BSA and SWCNT. Thus, it was shown that BSA solid nanocomposites with CNTs can interact either with the help of hydrophobic forces or with the formation of covalent bonds, which depends on the diameter of the used nanotubes. The viability of connective fibroblast tissue cells on nanocomposites with both types of SWCNT was demonstrated. It was found that nanocomposites based on SWCNT I provide slightly better compatibility of their structure with fibroblasts. It allows to achieve better cell adhesion to the nanocomposite surface. These criteria make extensive use of scaffold nanocomposites in biomedicine, depending on the requirements for their quality and application.
Читать
тезис
|
The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy
|
15.02.2020 |
Gerasimenko A.
Ten G.
Ryabkin D.
Shcherbakova N.
Morozova E.
Ichkitidze L.
|
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy |
10.1016/j.saa.2019.117682 |
0 |
Ссылка
© 2019 Elsevier B.V. The results of the study of composites based on bovine serum albumin (BSA) and single-walled carbon nanotubes (SWCNT) are presented. Nanocomposites were created by evaporation of the water-albumin dispersion with nanotubes using diode laser with temperature control. Two types of nanotubes were used. SWCNT I were synthesized using the electric arc method, SWCNT II were synthesized using the gas phase method. SWCNT I had a diameter and length less than SWCNT II. The mechanism of interaction between BSA and SWCNT in solid nanocomposites is considered. An experimental and theoretical studies of the interaction between aspartic (Asp) and glutamic (Glu) amino acids located on the outer surface of BSA and nanotubes using of vibrational spectroscopy (Fourier-transform infrared (FTIR) and Raman spectroscopy) was carried out. The possibility of nanotubes functionalization by oxygen atoms of negative amino acid residues Asp and Glu, which are on the outer surface of BSA, is shown by molecular modeling. The formation of covalent bonds between BSA and SWCNT in nanocomposites with different concentrations of nanotubes (0.01, 0.1 and 1 g/l) was confirmed by vibrational spectra. The covalent interaction between BSA with SWCNT under the laser irradiation leads to the conformational changes in the secondary and tertiary structures of albumin. This is confirmed by a significant decrease in the intensity of the absorption bands in the high-frequency region. The calculation of the vibrational spectra of the three Glycine:Glycine, Glutamic acid:Threonine and Aspartic acid:Lysine complexes, which take into account hydrogen, ion-dipole and ion-ion bonds, showed that a disturbance in the intermolecular interaction between amino acid residues led to significant decrease in the intensity of absorption bands in the region of stretching vibrations bonds OH and NH. From the Raman spectra, it was found that a significant number of defects in SWCNT is caused by the covalent attachment of oxygen atoms to the graphene surface of nanotubes. An increase in the diameter of nanotubes (4 nm) has practically no effect on the absorption spectrum of nanocomposite, while measuring the concentration of SWCNT affects the FTIR spectra. This confirmed the hydrophobic interaction between BSA and SWCNT. Thus, it was shown that BSA solid nanocomposites with CNTs can interact either with the help of hydrophobic forces or with the formation of covalent bonds, which depends on the diameter of the used nanotubes. The viability of connective fibroblast tissue cells on nanocomposites with both types of SWCNT was demonstrated. It was found that nanocomposites based on SWCNT I provide slightly better compatibility of their structure with fibroblasts. It allows to achieve better cell adhesion to the nanocomposite surface. These criteria make extensive use of scaffold nanocomposites in biomedicine, depending on the requirements for their quality and application.
Читать
тезис
|
The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy
|
15.02.2020 |
Gerasimenko A.
Ten G.
Ryabkin D.
Shcherbakova N.
Morozova E.
Ichkitidze L.
|
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy |
10.1016/j.saa.2019.117682 |
0 |
Ссылка
© 2019 Elsevier B.V. The results of the study of composites based on bovine serum albumin (BSA) and single-walled carbon nanotubes (SWCNT) are presented. Nanocomposites were created by evaporation of the water-albumin dispersion with nanotubes using diode laser with temperature control. Two types of nanotubes were used. SWCNT I were synthesized using the electric arc method, SWCNT II were synthesized using the gas phase method. SWCNT I had a diameter and length less than SWCNT II. The mechanism of interaction between BSA and SWCNT in solid nanocomposites is considered. An experimental and theoretical studies of the interaction between aspartic (Asp) and glutamic (Glu) amino acids located on the outer surface of BSA and nanotubes using of vibrational spectroscopy (Fourier-transform infrared (FTIR) and Raman spectroscopy) was carried out. The possibility of nanotubes functionalization by oxygen atoms of negative amino acid residues Asp and Glu, which are on the outer surface of BSA, is shown by molecular modeling. The formation of covalent bonds between BSA and SWCNT in nanocomposites with different concentrations of nanotubes (0.01, 0.1 and 1 g/l) was confirmed by vibrational spectra. The covalent interaction between BSA with SWCNT under the laser irradiation leads to the conformational changes in the secondary and tertiary structures of albumin. This is confirmed by a significant decrease in the intensity of the absorption bands in the high-frequency region. The calculation of the vibrational spectra of the three Glycine:Glycine, Glutamic acid:Threonine and Aspartic acid:Lysine complexes, which take into account hydrogen, ion-dipole and ion-ion bonds, showed that a disturbance in the intermolecular interaction between amino acid residues led to significant decrease in the intensity of absorption bands in the region of stretching vibrations bonds OH and NH. From the Raman spectra, it was found that a significant number of defects in SWCNT is caused by the covalent attachment of oxygen atoms to the graphene surface of nanotubes. An increase in the diameter of nanotubes (4 nm) has practically no effect on the absorption spectrum of nanocomposite, while measuring the concentration of SWCNT affects the FTIR spectra. This confirmed the hydrophobic interaction between BSA and SWCNT. Thus, it was shown that BSA solid nanocomposites with CNTs can interact either with the help of hydrophobic forces or with the formation of covalent bonds, which depends on the diameter of the used nanotubes. The viability of connective fibroblast tissue cells on nanocomposites with both types of SWCNT was demonstrated. It was found that nanocomposites based on SWCNT I provide slightly better compatibility of their structure with fibroblasts. It allows to achieve better cell adhesion to the nanocomposite surface. These criteria make extensive use of scaffold nanocomposites in biomedicine, depending on the requirements for their quality and application.
Читать
тезис
|
The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy
|
15.02.2020 |
Gerasimenko A.
Ten G.
Ryabkin D.
Shcherbakova N.
Morozova E.
Ichkitidze L.
|
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy |
10.1016/j.saa.2019.117682 |
0 |
Ссылка
© 2019 Elsevier B.V. The results of the study of composites based on bovine serum albumin (BSA) and single-walled carbon nanotubes (SWCNT) are presented. Nanocomposites were created by evaporation of the water-albumin dispersion with nanotubes using diode laser with temperature control. Two types of nanotubes were used. SWCNT I were synthesized using the electric arc method, SWCNT II were synthesized using the gas phase method. SWCNT I had a diameter and length less than SWCNT II. The mechanism of interaction between BSA and SWCNT in solid nanocomposites is considered. An experimental and theoretical studies of the interaction between aspartic (Asp) and glutamic (Glu) amino acids located on the outer surface of BSA and nanotubes using of vibrational spectroscopy (Fourier-transform infrared (FTIR) and Raman spectroscopy) was carried out. The possibility of nanotubes functionalization by oxygen atoms of negative amino acid residues Asp and Glu, which are on the outer surface of BSA, is shown by molecular modeling. The formation of covalent bonds between BSA and SWCNT in nanocomposites with different concentrations of nanotubes (0.01, 0.1 and 1 g/l) was confirmed by vibrational spectra. The covalent interaction between BSA with SWCNT under the laser irradiation leads to the conformational changes in the secondary and tertiary structures of albumin. This is confirmed by a significant decrease in the intensity of the absorption bands in the high-frequency region. The calculation of the vibrational spectra of the three Glycine:Glycine, Glutamic acid:Threonine and Aspartic acid:Lysine complexes, which take into account hydrogen, ion-dipole and ion-ion bonds, showed that a disturbance in the intermolecular interaction between amino acid residues led to significant decrease in the intensity of absorption bands in the region of stretching vibrations bonds OH and NH. From the Raman spectra, it was found that a significant number of defects in SWCNT is caused by the covalent attachment of oxygen atoms to the graphene surface of nanotubes. An increase in the diameter of nanotubes (4 nm) has practically no effect on the absorption spectrum of nanocomposite, while measuring the concentration of SWCNT affects the FTIR spectra. This confirmed the hydrophobic interaction between BSA and SWCNT. Thus, it was shown that BSA solid nanocomposites with CNTs can interact either with the help of hydrophobic forces or with the formation of covalent bonds, which depends on the diameter of the used nanotubes. The viability of connective fibroblast tissue cells on nanocomposites with both types of SWCNT was demonstrated. It was found that nanocomposites based on SWCNT I provide slightly better compatibility of their structure with fibroblasts. It allows to achieve better cell adhesion to the nanocomposite surface. These criteria make extensive use of scaffold nanocomposites in biomedicine, depending on the requirements for their quality and application.
Читать
тезис
|
The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy
|
15.02.2020 |
Gerasimenko A.
Ten G.
Ryabkin D.
Shcherbakova N.
Morozova E.
Ichkitidze L.
|
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy |
10.1016/j.saa.2019.117682 |
0 |
Ссылка
© 2019 Elsevier B.V. The results of the study of composites based on bovine serum albumin (BSA) and single-walled carbon nanotubes (SWCNT) are presented. Nanocomposites were created by evaporation of the water-albumin dispersion with nanotubes using diode laser with temperature control. Two types of nanotubes were used. SWCNT I were synthesized using the electric arc method, SWCNT II were synthesized using the gas phase method. SWCNT I had a diameter and length less than SWCNT II. The mechanism of interaction between BSA and SWCNT in solid nanocomposites is considered. An experimental and theoretical studies of the interaction between aspartic (Asp) and glutamic (Glu) amino acids located on the outer surface of BSA and nanotubes using of vibrational spectroscopy (Fourier-transform infrared (FTIR) and Raman spectroscopy) was carried out. The possibility of nanotubes functionalization by oxygen atoms of negative amino acid residues Asp and Glu, which are on the outer surface of BSA, is shown by molecular modeling. The formation of covalent bonds between BSA and SWCNT in nanocomposites with different concentrations of nanotubes (0.01, 0.1 and 1 g/l) was confirmed by vibrational spectra. The covalent interaction between BSA with SWCNT under the laser irradiation leads to the conformational changes in the secondary and tertiary structures of albumin. This is confirmed by a significant decrease in the intensity of the absorption bands in the high-frequency region. The calculation of the vibrational spectra of the three Glycine:Glycine, Glutamic acid:Threonine and Aspartic acid:Lysine complexes, which take into account hydrogen, ion-dipole and ion-ion bonds, showed that a disturbance in the intermolecular interaction between amino acid residues led to significant decrease in the intensity of absorption bands in the region of stretching vibrations bonds OH and NH. From the Raman spectra, it was found that a significant number of defects in SWCNT is caused by the covalent attachment of oxygen atoms to the graphene surface of nanotubes. An increase in the diameter of nanotubes (4 nm) has practically no effect on the absorption spectrum of nanocomposite, while measuring the concentration of SWCNT affects the FTIR spectra. This confirmed the hydrophobic interaction between BSA and SWCNT. Thus, it was shown that BSA solid nanocomposites with CNTs can interact either with the help of hydrophobic forces or with the formation of covalent bonds, which depends on the diameter of the used nanotubes. The viability of connective fibroblast tissue cells on nanocomposites with both types of SWCNT was demonstrated. It was found that nanocomposites based on SWCNT I provide slightly better compatibility of their structure with fibroblasts. It allows to achieve better cell adhesion to the nanocomposite surface. These criteria make extensive use of scaffold nanocomposites in biomedicine, depending on the requirements for their quality and application.
Читать
тезис
|
Obtaining of highly-active catalysts of unsaturated compounds hydrogenation by using supercritical carbon dioxide
|
01.10.2018 |
Parenago O.
Timashev P.
Karakhanov E.
Maximov A.
Lazhko A.
Zolotukhina A.
Bagratashvili V.
|
Journal of Supercritical Fluids |
|
0 |
Ссылка
© 2018 Elsevier B.V. Polymer frameworks have been for the first time impregnated with rhodium and palladium compounds in a supercritical carbon dioxide medium. The polymeric carriers were the mesoporous phenol-formaldehyde resin and cross-linked dendrimer networks, based on poly(propylene imine) and poly(amido amine) dendrimers. The metal compounds were rhodium acetylacetonate and palladium carboxylates including their fluoro-substituted derivatives and palladium hexafluoroacetylacetonate. Using the IR-spectroscopy method, we have shown that the metal content in the polymers was in the range of 0.3–2.0 wt.% depending on the polymer nature, cross-linking agent type and cross-linking degree. We have obtained the samples of polymer supports with nanosized metal particles through hydrogen reduction of immobilized rhodium and palladium compounds at P(H 2 ) = 6–10 MPa, T = 60 °C, 4 h time. The average rhodium particle size was 1–2 nm. It has been shown that the obtained nanocomposites were extremely active catalysts for hydrogenation of unsaturated hydrocarbons.
Читать
тезис
|
Preparation of plasmonic porous Au@AgVO<inf>3</inf> belt-like nanocomposites with enhanced visible light photocatalytic activity
|
18.05.2018 |
Fu H.
Yang X.
Zhang Z.
Wang W.
An X.
Dong Y.
Li X.
|
Nanotechnology |
|
4 |
Ссылка
© 2018 IOP Publishing Ltd. This study reports a visible light-driven plasmonic photocatalyst of Au deposited AgVO3 nanocomposites prepared by a hydrothermal method, and further in situ modification of Au nanoparticles by a reducing agent of NaHSO3 in an aqueous solution at room temperature. Various characterization techniques, such as SEM, TEM, XRD, EDS, XPS, and Brunauer-Emmett-Teller, were used to reveal the morphology, composition, and related properties. The results show that belt-like AgVO3 nanoparticles with a width of ∼100 nm were successfully synthesized, and Au nanoparticles with controlled sizes (5-20 nm) were well distributed on the surface of the nanobelts. The UV-vis absorption spectra indicate that the decoration of Au nanoparticles can modulate the optical properties of the nanocomposites, namely, red shift occurs with the increase of Au content. The photocatalytic activities were measured by monitoring the degradation of Rhodamine B (RhB) with the presence of photocatalysts under visible light irradiation. The photodegradation results show that AgVO3 nanobelts exhibit good visible light photocatalytic activities with a degradation efficiency of 98% in 50 min and a reaction rate constant of 0.025 min-1 towards 30 ppm RhB. With the modification of Au nanoparticles, photocatalytic activity basically increases with the molar ratio of Au to V. Among the Au@AgVO3 nanocomposites, the 3% (molar ratio) Au decorated AgVO3 nanobelts showed the highest photocatalytic activity, and the k (0.064 min-1) was almost two times higher than that of the pure AgVO3 nanobelts. This can be attributed to several factors including specific surface areas, optical properties, and the energy band structure of the composites under visible light illumination. These findings may be useful for the practical use of visible light-driven photocatalysts with enhanced photocatalytic efficiencies for environmental remediation.
Читать
тезис
|
Layers with the tensoresistive properties and their possible applications in medicine
|
01.01.2018 |
Ichkitidze L.
Gerasimenko A.
Podgaetsky V.
Selishchev S.
|
Materials Physics and Mechanics |
|
2 |
Ссылка
© 2018, Peter the Great St. Petersburg Polytechnic University. Layers of different materials, including nanocomposites, containing carbon nanotubes, with the tensoresistive properties are discussed. The investigated layers are divided into two groups: without (group I) and with carbon nanotubes (group II). A group-I material that is the most suitable for fabrication of a tensoresistor is the elastomer with microchannel, filled with a conductive liquid. In group II, these are the (0.2-10)-μm-thick layers consisting of the carboxymethylcellulose matrix, filled with multiwalled carbon nanotubes (∼5 wt.%). The investigated layers can be used as alternative tensoresistors for medical applications.
Читать
тезис
|
Electrical conductivity of the nanocomposite layers for use in biomedical systems
|
01.01.2018 |
Ichkitidze L.
Gerasimenko A.
Podgaetsky V.
Selishchev S.
Dudin A.
Pavlov A.
|
Materials Physics and Mechanics |
|
4 |
Ссылка
© 2018, Peter the Great St. Petersburg Polytechnic University. Nanocomposite layers consisting of an acrylic paint and single-walled carbon nanotubes (∼1.5 wt.%) have been investigated. The investigated samples had a disk shape with a diameter of 20-30 mm and a thickness of 2-50 μm. After exposure in water for 350 h, the layer mass remained almost invariable (a mass loss of ≤ 1.5%) and the layer samples exhibited high adhesion to glass substrates and a conductivity of ∼ 40 S/m. The layers consisting of the nanotubes and acrylic paint exfoliated from the substrates for ∼1 h. After heat treatment at a temperature of 140 °C, all the layers exhibited a semiconductor-type temperature dependence of the resistance. The prospects of using these layers in various medical products, e.g. implants for wireless energy transmission, have been discussed.
Читать
тезис
|