Laser-triggered drug release from polymeric 3-D micro-structured films via optical fibers
|
01.05.2020 |
Kurochkin M.
Sindeeva O.
Brodovskaya E.
Gai M.
Frueh J.
Su L.
Sapelkin A.
Tuchin V.
Sukhorukov G.
|
Materials Science and Engineering C |
10.1016/j.msec.2020.110664 |
0 |
Ссылка
© 2020 Elsevier B.V. Photosensitive polymeric three-dimensional microstructured film (PTMF) is a new type of patterned polymeric films functionalized with an array of sealed hollow 3D containers. The microstructured system with enclosed chemicals provides a tool for the even distribution of biologically active substances on a given surface that can be deposited on medical implants or used as a cells substrate. In this work, we proposed a way for photothermally activating and releasing encapsulated substances at picogram amounts from the PTMF surface in different environments using laser radiation delivered with a multimode optical fiber. The photosensitive PTMFs were prepared by the layer-by-layer (LbL) assembly from alternatively charged polyelectrolytes followed by covering with a layer of hydrophobic polylactic acid (PLA) and a layer of gold nanoparticles (AuNPs). Moreover, the typical photothermal cargo release amounts were determined on the surface of the PTMF for a range of laser powers delivered to films placed in the air, deionized (DI) water, and 1% agarose gel. The agarose gel was used as a soft tissue model for developing a technique for the laser activation of PTMFs deep in tissues using optical waveguides. The number of PTMF chambers activated by a near-infrared (NIR) laser beam was evaluated as the function of optical parameters.
Читать
тезис
|
Laser-triggered drug release from polymeric 3-D micro-structured films via optical fibers
|
01.05.2020 |
Kurochkin M.
Sindeeva O.
Brodovskaya E.
Gai M.
Frueh J.
Su L.
Sapelkin A.
Tuchin V.
Sukhorukov G.
|
Materials Science and Engineering C |
10.1016/j.msec.2020.110664 |
0 |
Ссылка
© 2020 Elsevier B.V. Photosensitive polymeric three-dimensional microstructured film (PTMF) is a new type of patterned polymeric films functionalized with an array of sealed hollow 3D containers. The microstructured system with enclosed chemicals provides a tool for the even distribution of biologically active substances on a given surface that can be deposited on medical implants or used as a cells substrate. In this work, we proposed a way for photothermally activating and releasing encapsulated substances at picogram amounts from the PTMF surface in different environments using laser radiation delivered with a multimode optical fiber. The photosensitive PTMFs were prepared by the layer-by-layer (LbL) assembly from alternatively charged polyelectrolytes followed by covering with a layer of hydrophobic polylactic acid (PLA) and a layer of gold nanoparticles (AuNPs). Moreover, the typical photothermal cargo release amounts were determined on the surface of the PTMF for a range of laser powers delivered to films placed in the air, deionized (DI) water, and 1% agarose gel. The agarose gel was used as a soft tissue model for developing a technique for the laser activation of PTMFs deep in tissues using optical waveguides. The number of PTMF chambers activated by a near-infrared (NIR) laser beam was evaluated as the function of optical parameters.
Читать
тезис
|
Laser-triggered drug release from polymeric 3-D micro-structured films via optical fibers
|
01.05.2020 |
Kurochkin M.
Sindeeva O.
Brodovskaya E.
Gai M.
Frueh J.
Su L.
Sapelkin A.
Tuchin V.
Sukhorukov G.
|
Materials Science and Engineering C |
10.1016/j.msec.2020.110664 |
0 |
Ссылка
© 2020 Elsevier B.V. Photosensitive polymeric three-dimensional microstructured film (PTMF) is a new type of patterned polymeric films functionalized with an array of sealed hollow 3D containers. The microstructured system with enclosed chemicals provides a tool for the even distribution of biologically active substances on a given surface that can be deposited on medical implants or used as a cells substrate. In this work, we proposed a way for photothermally activating and releasing encapsulated substances at picogram amounts from the PTMF surface in different environments using laser radiation delivered with a multimode optical fiber. The photosensitive PTMFs were prepared by the layer-by-layer (LbL) assembly from alternatively charged polyelectrolytes followed by covering with a layer of hydrophobic polylactic acid (PLA) and a layer of gold nanoparticles (AuNPs). Moreover, the typical photothermal cargo release amounts were determined on the surface of the PTMF for a range of laser powers delivered to films placed in the air, deionized (DI) water, and 1% agarose gel. The agarose gel was used as a soft tissue model for developing a technique for the laser activation of PTMFs deep in tissues using optical waveguides. The number of PTMF chambers activated by a near-infrared (NIR) laser beam was evaluated as the function of optical parameters.
Читать
тезис
|
Mechanisms of laser activation of chondrocytes in osteoarthritis healing
|
01.08.2018 |
Alexandrovskaya Y.
Baum O.
Shekhter A.
Petersen E.
Tiflova O.
Dmitriev A.
Ulyanov V.
Svistushkin V.
Selezneva L.
Sobol E.
|
Laser Physics Letters |
|
4 |
Ссылка
© 2018 Astro Ltd. Lasers offer new possibilities in the treatment of such widespread diseases as osteoarthritis, with both direct and indirect effects on cell metabolism. Cyclic hydrostatic pressure is one of the main natural stimuli of cartilage chondrocytes. The present work shows that hydrostatic stimulation with magnitudes of up to 20 MPa can be realized locally through infrared impact on the neighboring media of chondrocytes. We compare indirect (thermomechanical, λ = 1560 nm) and direct (photo-modulation, λ1 = 1560 nm, λ2 = 670 nm) laser effects on the synthetic activity of chondrocytes in cultures within a 1 min exposure time limit, to study separately the photo-modulation and thermomechanical components of laser impact. The chondrocyte activity was monitored by immunohistochemical analysis in normoxic and hypoxic conditions. Collagen II and proteoglycan accumulation increased significantly (up to 70%) after a pulsed thermomechanical laser impact. Thermomechanical laser irradiation showed the more pronounced stimulation in both normoxic and hypoxic conditions, while the effect of photo-modulation was inhibited by oxygen concentration increase. Theoretical calculations of the laser-induced temperature and stress fields show that the spreading of the stress field with a maximum at 19.2 MPa is approximately three times greater than that of appreciable (>1 °C) heating. Thus, thermomechanical infrared stimulation of chondrocytes can be a perspective method for the restoration of hyaline-type cartilage.
Читать
тезис
|