First identification of a fatal fungal infection of the marine sponge Chondrosia reniformis by Aspergillus tubingensis
|
19.09.2019 |
Greco G.
Di Piazza S.
Gallus L.
Amaroli A.
Pozzolini M.
Ferrando S.
Bertolino M.
Scarfì S.
Zotti M.
|
Diseases of Aquatic Organisms |
10.3354/dao03397 |
0 |
Ссылка
© 2019 Inter-Research. Sponges are considered promising sources of biomolecules for both pharmaceutical and cosmetic interests as well as for the production of biomaterials suitable for tissue engineering and regenerative medicine. Accordingly, the ability to grow sponges in captivity and in healthy conditions to increase their biomass is a required goal for the development of sponge aquaculture systems. To date, little information is available about the pathogenicity of fungi associated with sponges. In our study, we identified an infection in freshly collected specimens of Chondrosia reniformis (Porifera, Demospongiae) and determined that the fungus Aspergillus tubingensis was the pathogen responsible. This is the first description of a natural infection of C. reniformis by A. tubingensis. Despite raising an inflammatory response by means of an increase in tumour necrosis factor (TNF) mRNA, the infected C. reniformis specimens were not able to control the fungal infection, leading to rotting in 15 d. Characterization of this infection shows that a widely distributed fungus can represent a potential hazard to sponge aquaculture industries and how, especially in stressed or compromised marine environments, this fungus could represent a fatal opportunistic pathogen.
Читать
тезис
|
Marine Cyclic Guanidine Alkaloids Monanchomycalin B and Urupocidin A Act as Inhibitors of TRPV1, TRPV2 and TRPV3, but not TRPA1 Receptors
|
|
Андреев Я. А.
Шария М.А.
Несвижский Юрий Владимирович
|
Marine Drugs |
|
|
Marine sponges contain a variety of low-molecular-weight compounds including guanidine alkaloids possessing different biological activities. Monanchomycalin B and urupocidin A were isolated from the marine sponge Monanchora pulchra. We found that they act as inhibitors of the TRPV1, TRPV2, and TRPV3 channels, but are inactive against the TRPA1 receptor. Monanchomycalin B is the most active among all published marine alkaloids (EC50 6.02, 2.84, and 3.25 μM for TRPV1, TRPV2, and TRPV3, correspondingly). Moreover, monanchomycalin B and urupocidin A are the first samples of marine alkaloids affecting the TRPV2 receptor. Two semi-synthetic urupocidin A derivatives were also obtained and tested against TRP (Transient Receptor Potential) receptors that allowed us to collect some data concerning the structure-activity relationship in this series of compounds. We showed that the removal of one of three side chains or double bonds in the other side chains in urupocidin A led to a decrease of the inhibitory activities. New ligands specific to the TRPV subfamily may be useful for the design of medicines as in the study of TRP channels biology.
Читать
тезис
Публикация |
Marine Cyclic Guanidine Alkaloids Monanchomycalin B and Urupocidin A Act as Inhibitors of TRPV1, TRPV2 and TRPV3, but not TRPA1 Receptors
|
|
Андреев Я. А. (Заведующий лабораторией Молекулярной и клеточной биологии)
Шария М.А. (Профессор)
Несвижский Юрий Владимирович (Профессор)
|
Marine Drugs |
|
|
Marine sponges contain a variety of low-molecular-weight compounds including guanidine alkaloids possessing different biological activities. Monanchomycalin B and urupocidin A were isolated from the marine sponge Monanchora pulchra. We found that they act as inhibitors of the TRPV1, TRPV2, and TRPV3 channels, but are inactive against the TRPA1 receptor. Monanchomycalin B is the most active among all published marine alkaloids (EC50 6.02, 2.84, and 3.25 μM for TRPV1, TRPV2, and TRPV3, correspondingly). Moreover, monanchomycalin B and urupocidin A are the first samples of marine alkaloids affecting the TRPV2 receptor. Two semi-synthetic urupocidin A derivatives were also obtained and tested against TRP (Transient Receptor Potential) receptors that allowed us to collect some data concerning the structure-activity relationship in this series of compounds. We showed that the removal of one of three side chains or double bonds in the other side chains in urupocidin A led to a decrease of the inhibitory activities. New ligands specific to the TRPV subfamily may be useful for the design of medicines as in the study of TRP channels biology.
Читать
тезис
Публикация |