Год публикации:
Все года
2018
2019
2020
Название |
Дата публикации |
Коллектив авторов |
Журнал |
DOI |
Индекс цитирования |
Ссылка на источник |
Tailoring the collagen film structural properties via direct laser crosslinking of star-shaped polylactide for robust scaffold formation
|
01.02.2020 |
Bardakova K.
Grebenik E.
Minaev N.
Churbanov S.
Moldagazyeva Z.
Krupinov G.
Kostjuk S.
Timashev P.
|
Materials Science and Engineering C |
10.1016/j.msec.2019.110300 |
1 |
Ссылка
© 2019 Elsevier B.V. Application of restructured collagen-based biomaterials is generally restricted by their poor mechanical properties, which ideally must be close to those of a tissue being repaired. Here, we present an approach to the formation of a robust biomaterial using laser-induced curing of a photosensitive star-shaped polylactide. The created collagen-based structures demonstrated an increase in the Young's modulus by more than an order of magnitude with introduction of reinforcing patterns (from 0.15 ± 0.02 MPa for the untreated collagen to 51.2 ± 5.6 MPa for the reinforced collagen). It was shown that the geometrical configuration of the created reinforcing pattern affected the scaffold's mechanical properties only in the case of a relatively high laser radiation power density, when the effect of accumulated thermomechanical stresses in the photocured regions was significant. Photo-crosslinking of polylactide did not compromise the scaffold's cytotoxicity and provided fluorescent regions in the collagen matrix, that create a potential for noninvasive monitoring of such materials' biodegradation kinetics in vivo.
Читать
тезис
|