Application of nanoscale polymer colloid carriers for targeted delivery of the brain-derived neurotrophic factor through the blood-brain barrier in experimental parkinsonism
|
01.01.2018 |
Kapitonova M.
Alyautdin R.
Wan-Syazli R.
Nor-Ashikin M.
Ahmad A.
Norita S.
Dydykin S.
|
Bulletin of Russian State Medical University |
|
0 |
Ссылка
© 2018 Istituto Superiore di Sanita. All Rights Reserved. Parkinson disease is one of the common age-related motor neurodegenerative diseases, in which dopamine neurons degeneration is considered to be pathognomic for the development of motor disfunction. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family, which is considered to be a key regulator of neuronal plasticity. BDNF, being a large molecule, does not pass through the blood-brain barrier (BBB). Synthetic polymer nanoparticles (NP), covered by surfactant, provide the phenomenon of “Trojan hoarse” and enable BDNF to penetrate into the brain tissue. For modelling of parkinsonism we used an intraperitoneal (i.p.) injection of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) which was injected to the C57BL/6 mice with subsequest treatment with normal saline (group 1), BDNF (group 2), nanoparticulate BDNF (group 3) and surfactant-coated nanoparticulate BDNF (group 4). After 90 min, 24 hours, 72 hours and 7 days manifestations of parkinsonism were evaluated using behavioural tests of open field, rota-rod, assessment of the tremor, length of the body and pace. At the end of experiment the brain was sampled for histological evaluation of changes in the striatum and midbrain and concentration of BDNF in the brain tissues. The results of the experiments demonstrated that nanoparticulate BDNF covered with surfactant significanltly reduced rigidity of the skeletal muscles, oligokinesia and tremor, and also significantly increased BDNF concentration in the brain tissues.
Читать
тезис
|
Comparison of results obtained by elisa and neutralization test in assessing the protection of population from tick-borne encephalitis
|
01.01.2018 |
Chemokhaeva L.
Maikova G.
Rogova Y.
Romanenko V.
Ankudinova A.
Kilyachina A.
Vorovlch M.
Karganova G.
|
Voprosy Virusologii |
|
0 |
Ссылка
© 2017 Izdatel'stvo Meditsina. All rights reserved. The enzyme-linked immunosorbent assay (ELISA) and the neutralization test (NT) are often used to determine the level of seropositive population and to evaluate the immunogenicity of vaccines. ELISA provides information on the total pool of antiviral antibodies, while NT allows the antiviral protection level of a person to be estimated. It is assumed that the 1: 100 titer in ELISA and the 1: 10 titer in NT are protective. Obviously, the ratio of the total pool and virus neutralizing antibodies can vary as a result of natural immunization or vaccination. In this study, two methods were used to study the blood serum samples taken in a group of inhabitants of the Sverdlovsk region aged from 1 to 60 years. The samples were collected before immunization and 30 days after two immunizations with inactivated vaccines against tick-borne encephalitis of different manufacturers. Immunizations were performed either according to a standard scheme (30-day interval between immunizations), or according to an emergency scheme (14-day interval). It was shown that the data on the presence of antiviral antibodies in protective titers obtained by ELISA and NT were consistent in more than 85% of cases. The discrepancies between the data are due, in the first place, to the difference in the sensitivities of the two methods. The proportion of seropositive people according to NT data is always greater than that according to the results of ELISA. Nevertheless, among 174 children, about 5% of recipients after a double immunization were seropositive according to ELISA, but did not have neutralizing antibodies in protective titers.
Читать
тезис
|