Год публикации:
Все года
2018
2019
2020
Название |
Дата публикации |
Коллектив авторов |
Журнал |
DOI |
Индекс цитирования |
Ссылка на источник |
Dendritic spine density changes and homeostatic synaptic scaling: a meta-analysis of animal studies
|
01.01.2022 |
Moulin T.C.
Rayêe D.
Schiöth H.B.
|
Neural Regeneration Research |
10.4103/1673-5374.314283 |
0 |
Ссылка
Mechanisms of homeostatic plasticity promote compensatory changes of cellular excitability in response to chronic changes in the network activity. This type of plasticity is essential for the maintenance of brain circuits and is involved in the regulation of neural regeneration and the progress of neurodegenerative disorders. One of the most studied homeostatic processes is synaptic scaling, where global synaptic adjustments take place to restore the neuronal firing rate to a physiological range by the modulation of synaptic receptors, neurotransmitters, and morphology. However, despite the comprehensive literature on the electrophysiological properties of homeostatic scaling, less is known about the structural adjustments that occur in the synapses and dendritic tree. In this study, we performed a meta-analysis of articles investigating the effects of chronic network excitation (synaptic downscaling) or inhibition (synaptic upscaling) on the dendritic spine density of neurons. Our results indicate that spine density is consistently reduced after protocols that induce synaptic scaling, independent of the intervention type. Then, we discuss the implication of our findings to the current knowledge on the morphological changes induced by homeostatic plasticity.
Читать
тезис
|
Memory consolidation impairment induced by Interleukin-1β is associated with changes in hippocampal structural plasticity
|
16.09.2019 |
Herrera G.
Calfa G.
Schiöth H.
Lasaga M.
Scimonelli T.
|
Behavioural Brain Research |
10.1016/j.bbr.2019.111969 |
0 |
Ссылка
© 2019 Elsevier B.V. Pro-inflammatory cytokines, particularly Interleukin-1β (IL-1β), can affect cognitive processes such as learning and memory. The aim of this study was to establish whether the effect of IL-1β on contextual fear memory is associated with changes in hippocampal structural plasticity. We also studied the effect of α-melanocyte-stimulating hormone (α-MSH), a potent anti-inflammatory and neuro-protective peptide. Different groups of animals were implanted bilaterally in dorsal hippocampus (DH). After recovery they were conditioned for contextual fear memory and received the different treatments (vehicle, IL-1β, α-MSH or IL-1β + α-MSH). Memory was assessed 24 hs after conditioning and immediately after rats were perfused for dendritic spine analysis. Our results show that local hippocampal administration of IL-1β just after memory encoding induced impairment in contextual memory and a reduction in the total density of CA1 hippocampal dendritic spines, particularly the mature ones. α-MSH administration reversed the IL-1β induced changes. The results suggest that neuro-inflammation induced by IL-1β interferes with experience-dependent structural plasticity in DH whereas α-MSH has a beneficial modulatory role in preventing this effect.
Читать
тезис
|