Harnessing the potential of killers and altruists within the microbial community: A possible alternative to antibiotic therapy?
|
01.12.2019 |
Ikryannikova L.
Kurbatov L.
Soond S.
Zamyatnin A.
|
Antibiotics |
10.3390/antibiotics8040230 |
0 |
Ссылка
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. In the context of a post-antibiotic era, the phenomenon of microbial allolysis, which is defined as the partial killing of bacterial population induced by other cells of the same species, may take on greater significance. This phenomenon was revealed in some bacterial species such as Streptococcus pneumoniae and Bacillus subtilis, and has been suspected to occur in some other species or genera, such as enterococci. The mechanisms of this phenomenon, as well as its role in the life of microbial populations still form part of ongoing research. Herein, we describe recent developments in allolysis in the context of its practical benefits as a form of cell death that may give rise to developing new strategies for manipulating the life and death of bacterial communities. We highlight how such findings may be viewed with importance and potential within the fields of medicine, biotechnology, and pharmacology.
Читать
тезис
|
Loss of Orai2-Mediated Capacitative Ca<sup>2+</sup> Entry Is Neuroprotective in Acute Ischemic Stroke
|
01.11.2019 |
Stegner D.
Hofmann S.
Schuhmann M.
Kraft P.
Herrmann A.
Popp S.
Höhn M.
Popp M.
Klaus V.
Post A.
Kleinschnitz C.
Braun A.
Meuth S.
Lesch K.
Stoll G.
Kraft R.
Nieswandt B.
|
Stroke |
10.1161/STROKEAHA.119.025357 |
0 |
Ссылка
Background and Purpose- Ischemic stroke is one of the leading causes of disability and death. The principal goal of acute stroke treatment is the recanalization of the occluded cerebral arteries, which is, however, only effective in a very narrow time window. Therefore, neuroprotective treatments that can be combined with recanalization strategies are needed. Calcium overload is one of the major triggers of neuronal cell death. We have previously shown that capacitative Ca2+ entry, which is triggered by the depletion of intracellular calcium stores, contributes to ischemia-induced calcium influx in neurons, but the responsible Ca2+ channel is not known. Methods- Here, we have generated mice lacking the calcium channel subunit Orai2 and analyzed them in experimental stroke. Results- Orai2-deficient mice were protected from ischemic neuronal death both during acute ischemia under vessel occlusion and during ischemia/reperfusion upon successful recanalization. Calcium signals induced by calcium store depletion or oxygen/glucose deprivation were significantly diminished in Orai2-deficient neurons demonstrating that Orai2 is a central mediator of neuronal capacitative Ca2+ entry and is involved in calcium overload during ischemia. Conclusions- Our experimental data identify Orai2 as an attractive target for pharmaceutical intervention in acute stroke.
Читать
тезис
|
Regulation of lipid peroxidation and ferroptosis in diverse species
|
01.05.2018 |
Conrad M.
Kagan V.
Bayir H.
Pagnussat G.
Head B.
Traber M.
Stockwell B.
|
Genes and Development |
|
30 |
Ссылка
© 2018 Conrad et al. Lipid peroxidation is the process by which oxygen combines with lipids to generate lipid hydroperoxides via intermediate formation of peroxyl radicals. Vitamin E and coenzyme Q10 react with peroxyl radicals to yield peroxides, and then these oxidized lipid species can be detoxified by glutathione and glutathione peroxidase 4 (GPX4) and other components of the cellular antioxidant defense network. Ferroptosis is a form of regulated nonapoptotic cell death involving overwhelming iron-dependent lipid peroxidation. Here, we review the functions and regulation of lipid peroxidation, ferroptosis, and the antioxidant network in diverse species, including humans, other mammals and vertebrates, plants, invertebrates, yeast, bacteria, and archaea. We also discuss the potential evolutionary roles of lipid peroxidation and ferroptosis.
Читать
тезис
|