Год публикации:
Все года
2018
2019
2020
Название |
Дата публикации |
Коллектив авторов |
Журнал |
DOI |
Индекс цитирования |
Ссылка на источник |
A higher order approximate static condensation method for multi-material diffusion problems
|
15.10.2019 |
Zhiliakov A.
Svyatskiy D.
Olshanskii M.
Kikinzon E.
Shashkov M.
|
Journal of Computational Physics |
10.1016/j.jcp.2019.06.044 |
1 |
Ссылка
© 2019 Elsevier Inc. The paper studies an approximate static condensation method for the diffusion problem with discontinuous diffusion coefficients. The method allows for a general polygonal mesh which is unfitted to the material interfaces. Moreover, the interfaces can be discontinuous across the mesh edges as typical for numerical reconstructions using the volume or moment-of-fluid methods. We apply a mimetic finite difference method to solve local diffusion problems and use P1 (mortar) edge elements to couple local problems into the global system. The condensation process and the properties of the resulting algebraic system are discussed. It is demonstrated that the method is second order accurate on smooth solutions and performs well for problems with high contrast in diffusion coefficients. Experiments also show the robustness with respect to position of the material interfaces against the underlying mesh.
Читать
тезис
|