Rodent and fly models in behavioral neuroscience: An evaluation of methodological advances, comparative research, and future perspectives
|
01.01.2021 |
Moulin T.C.
Covill L.E.
Itskov P.M.
Williams M.J.
Schiöth H.B.
|
Neuroscience and Biobehavioral Reviews |
10.1016/j.neubiorev.2020.11.014 |
0 |
Ссылка
© 2020 The Authors The assessment of behavioral outcomes is a central component of neuroscientific research, which has required continuous technological innovations to produce more detailed and reliable findings. In this article, we provide an in-depth review on the progress and future implications for three model organisms (mouse, rat, and Drosophila) essential to our current understanding of behavior. By compiling a comprehensive catalog of popular assays, we are able to compare the diversity of tasks and usage of these animal models in behavioral research. This compilation also allows for the evaluation of existing state-of-the-art methods and experimental applications, including optogenetics, machine learning, and high-throughput behavioral assays. We go on to discuss novel apparatuses and inter-species analyses for centrophobism, feeding behavior, aggression and mating paradigms, with the goal of providing a unique view on comparative behavioral research. The challenges and recent advances are evaluated in terms of their translational value, ethical procedures, and trustworthiness for behavioral research.
Читать
тезис
|
Rodent and fly models in behavioral neuroscience: An evaluation of methodological advances, comparative research, and future perspectives
|
01.01.2021 |
Moulin T.C.
Covill L.E.
Itskov P.M.
Williams M.J.
Schiöth H.B.
|
Neuroscience and Biobehavioral Reviews |
10.1016/j.neubiorev.2020.11.014 |
0 |
Ссылка
© 2020 The Authors The assessment of behavioral outcomes is a central component of neuroscientific research, which has required continuous technological innovations to produce more detailed and reliable findings. In this article, we provide an in-depth review on the progress and future implications for three model organisms (mouse, rat, and Drosophila) essential to our current understanding of behavior. By compiling a comprehensive catalog of popular assays, we are able to compare the diversity of tasks and usage of these animal models in behavioral research. This compilation also allows for the evaluation of existing state-of-the-art methods and experimental applications, including optogenetics, machine learning, and high-throughput behavioral assays. We go on to discuss novel apparatuses and inter-species analyses for centrophobism, feeding behavior, aggression and mating paradigms, with the goal of providing a unique view on comparative behavioral research. The challenges and recent advances are evaluated in terms of their translational value, ethical procedures, and trustworthiness for behavioral research.
Читать
тезис
|
Thiamine and benfotiamine counteract ultrasound-induced aggression, normalize AMPA receptor expression and plasticity markers, and reduce oxidative stress in mice
|
15.09.2019 |
Gorlova A.
Pavlov D.
Anthony D.
Ponomarev E.
Sambon M.
Proshin A.
Shafarevich I.
Babaevskaya D.
Lesсh K.
Bettendorff L.
Strekalova T.
|
Neuropharmacology |
10.1016/j.neuropharm.2019.02.025 |
1 |
Ссылка
© 2019 Elsevier Ltd The negative societal impacts associated with the increasing prevalence of violence and aggression is increasing, and, with this rise, is the need to understand the molecular and cellular changes that underpin ultrasound-induced aggressive behavior. In mice, stress-induced aggression is known to alter AMPA receptor subunit expression, plasticity markers, and oxidative stress within the brain. Here, we induced aggression in BALB/c mice using chronic ultrasound exposure and examined the impact of the psychoactive anti-oxidant compounds thiamine (vitamin B1), and its derivative benfotiamine, on AMPA receptor subunit expression, established plasticity markers, and oxidative stress. The administration of thiamine or benfotiamine (200 mg/kg/day) in drinking water decreased aggressive behavior following 3-weeks of ultrasound exposure and benfotiamine, reduced floating behavior in the swim test. The vehicle-treated ultrasound-exposed mice exhibited increases in protein carbonyl and total glutathione, altered AMPA receptor subunits expression, and decreased expression of plasticity markers. These ultrasound-induced effects were ameliorated by thiamine and benfotiamine treatment; in particular both antioxidants were able to reverse ultrasound-induced changes in GluA1 and GluA2 subunit expression, and, within the prefrontal cortex, significantly reversed the changes in protein carbonyl and polysialylated form of neural cell adhesion molecule (PSA-NCAM) expression levels. Benfotiamine was usually more efficacious than thiamine. Thus, the thiamine compounds were able to counteract ultrasound-induced aggression, which was accompanied by the normalization of markers that have been showed to be associated with ultrasound-induced aggression. These commonly used, orally-active compounds may have considerable potential for use in the control of aggression within the community. This article is part of the Special Issue entitled ‘Current status of the neurobiology of aggression and impulsivity’.
Читать
тезис
|
Family environment interacts with CRHR1 rs17689918 to predict mental health and behavioral outcomes
|
30.08.2018 |
Roy A.
Laas K.
Kurrikoff T.
Reif A.
Veidebaum T.
Lesch K.
Harro J.
|
Progress in Neuro-Psychopharmacology and Biological Psychiatry |
|
3 |
Ссылка
© 2018 Elsevier Inc. Background: Corticotrophin-releasing hormone receptor-1 gene (CRHR1) variants have been implicated in mental health. However, little is known of the effects of CRHR1 on long-term mental health and behavior in presence of environmental stressors. We assess the effects of CRHR1 variant (rs17689918)-by-environment interactions on emotionality and behavioral traits, including anxiety, depression, aggression and antisocial behaviors. We also determine effects of rs17689918-by-environment-by-sex interactions on the above-mentioned outcomes. Methods: Genotypic assessments were carried out in 564 children (mean age 10 years, 52.5% females) from the ongoing longitudinal Estonian Children Personality Behaviour and Health Study (ECPBHS). Information on stressful life events and family relationships were available at baseline and information on behavioral and mental health outcomes (self- and parent-reports) were available at follow-up ages of 18 and 25 years. ANOVAs were used to determine associations of two-way CRHR1-by-environment and three-way CRHR1-by-sex-by-environment interactions on behavioral and mental health outcomes. Results: Two-way CRHR1 interaction effects showed associations between low familial warmth and hostility in individuals with the GG genotype. Associations of low familial warmth with aggression, of higher number of stressful life events with aggression, and of stressful live events with anxious-depressive symptoms were noted in male A-allele carriers and female GG homozygotes. Conclusion: CRHR1-by-familial environment interactions influence both outwardly-directed aggression as well as mood and anxiety disorder symptoms in a sex-specific manner. The type of environmental stressor can also influence effects of CRHR1 on behavioral and mental health outcomes.
Читать
тезис
|
Aggressiveness and social aggression in the youth environment: Philosophical and psychological field of interpretation
|
01.01.2018 |
Galushkin A.
Prasolov V.
Khuziakhmetov A.
Sizova Z.
Vasenina I.
|
XLinguae |
|
3 |
Ссылка
© 2018, Slovenska Vzdelavacia Obstaravacia. All rights reserved. The topicality of the research lies in the fact that the challenges of the last decades, especially the last few years, caused the growth of crime, violence, extremist and terrorist sentiments, and extensively involved youth in these processes. For these reasons, there is an acute need to study aggression and social aggression, especially the aggressive behavior of youth. An interpretive comprehension of these phenomena by social philosophers is important because aggression, in any form, is a social construct, is formed and manifested in social interaction; and the use of philosophical methods allows studying all the factors that influence its formation: political, economic, social, psychological and others. In this paper, we present a review and analysis of various approaches to understand human and social aggression, their generalization, and develop a general and comprehensive point of view relate to their nature and determinacy. The methodology of the research is based on the universal laws governing the development of nature, human society, and thought: dialectical synthesis, the transformation of quantity into quality, and the identity of opposites; the philosophical theory of determinism; and system-activity approach. The leading theoretical methods to study this issue are concerned with the content analysis of scientific papers relevant to the research problem, and, hence, consider the factors associated with the formation and manifestation of aggressiveness in general and social aggression in particular. The paper provides a definition of the phenomenon of social aggression considering it as a system of aggressor's attitudes and behaviors in the interaction, his intention of inflicting damage or other unpleasantness upon another individual, the aim to create more efficient (dominant) terms of interaction and activity, and/or cause damage to the target victims. Using system-activity approach to characterize the phenomenon the following features have been distinguished: a specific way of organizing activities, rationality, a temporal duration, purposefulness, practicality, introductory nature, a possibility of control and self-control, invertibility and duality caused by human consciousness as the only factor. The authors hope that the materials of the article might be of theoretical and practical value for developing programs aimed at the prevention of aggression, especially social youth aggression, and bring the process of social adaptation and socialization of young people back to the normal state, thus reducing the risk of destructive tendencies.
Читать
тезис
|
Pro-neurogenic, memory-enhancing and anti-stress effects of DF302, a novel fluorine gamma-carboline derivative with multi-target mechanism of action
|
01.01.2018 |
Strekalova T.
Bahzenova N.
Trofimov A.
Schmitt-Böhrer A.
Markova N.
Grigoriev V.
Zamoyski V.
Serkova T.
Redkozubova O.
Vinogradova D.
Umriukhin A.
Fisenko V.
Lillesaar C.
Shevtsova E.
Sokolov V.
Aksinenko A.
Lesch K.
Bachurin S.
|
Molecular Neurobiology |
|
9 |
Ссылка
© Springer Science+Business Media New York 2016. A comparative study performed in mice investigating the action of DF302, a novel fluoride-containing gamma-carboline derivative, in comparison to the structurally similar neuroprotective drug dimebon. Drug effects on learning and memory, emotionality, hippocampal neurogenesis and mitochondrial functions, as well as AMPA-mediated currents and the 5-HT6 receptor are reported. In the step-down avoidance and fear-conditioning paradigms, bolus administration of drugs at doses of 10 or 40 mg/kg showed that only the higher dose of DF302 improved long-term memory while dimebon was ineffective at either dosage. Short-term memory and fear extinction remained unaltered across treatment groups. During the 5-day predation stress paradigm, oral drug treatment over a period of 2 weeks at the higher dosage regimen decreased anxiety-like behaviour. Both compounds supressed inter-male aggression in CD1 mice, the most eminent being the effects of DF302 in its highest dose. DF302 at the higher dose decreased floating behaviour in a 2-day swim test and after 21-day ultrasound stress. The density of Ki67-positive cells, a marker of adult neurogenesis, was reduced in the dentate gyrus of stressed dimebon-treated and non-treated mice, but not in DF302-treated mice. Non-stressed mice that received DF302 had a higher density of Ki67-positive cells than controls unlike dimebon-treated mice. Similar to dimebon, DF302 effectively potentiated AMPA receptor-mediated currents, bound to the 5-HT6 receptor, inhibited mitochondrial permeability transition and displayed cytoprotective properties in cellular models of neurodegeneration. Thus, DF302 exerts multi-target effects on the key mechanisms of neurodegenerative pathologies and can be considered as an optimized novel analogue of the neuroprotective agent dimebon.
Читать
тезис
|
Pro-neurogenic, Memory-Enhancing and Anti-stress Effects of DF302, a Novel Fluorine Gamma-Carboline Derivative with Multi-target Mechanism of Action
|
|
Петер Леш
Стрекалова Т.В.
Умрюхин А.T.
Баженова Н.С.
|
Molecular Neurobiology |
|
|
A comparative study performed in mice investigating the action of DF302, a novel fluoride-containing gamma-carboline derivative, in comparison to the structurally similar neuroprotective drug dimebon. Drug effects on learning and memory, emotionality, hippocampal neurogenesis and mitochondrial functions, as well as AMPA-mediated currents and the 5-HT6 receptor are reported. In the step-down avoidance and fear-conditioning paradigms, bolus administration of drugs at doses of 10 or 40 mg/kg showed that only the higher dose of DF302 improved long-term memory while dimebon was ineffective at either dosage. Short-term memory and fear extinction remained unaltered across treatment groups. During the 5-day predation stress paradigm, oral drug treatment over a period of 2 weeks at the higher dosage regimen decreased anxiety-like behaviour. Both compounds supressed inter-male aggression in CD1 mice, the most eminent being the effects of DF302 in its highest dose. DF302 at the higher dose decreased floating behaviour in a 2-day swim test and after 21-day ultrasound stress. The density of Ki67-positive cells, a marker of adult neurogenesis, was reduced in the dentate gyrus of stressed dimebon-treated and non-treated mice, but not in DF302-treated mice. Non-stressed mice that received DF302 had a higher density of Ki67-positive cells than controls unlike dimebon-treated mice. Similar to dimebon, DF302 effectively potentiated AMPA receptor-mediated currents, bound to the 5-HT6 receptor, inhibited mitochondrial permeability transition and displayed cytoprotective properties in cellular models of neurodegeneration. Thus, DF302 exerts multi-target effects on the key mechanisms of neurodegenerative pathologies and can be considered as an optimized novel analogue of the neuroprotective agent dimebon.
Читать
тезис
|
Pro-neurogenic, Memory-Enhancing and Anti-stress Effects of DF302, a Novel Fluorine Gamma-Carboline Derivative with Multi-target Mechanism of Action
|
|
Петер Леш (руководитель лаборатории Психиатрической Нейробиологии)
Стрекалова Т.В. ( зам руководителя лаборатории Психиатрической Нейробиологии)
Умрюхин А.T. (старший научный сотрудник)
Баженова Н.С. (младший научный сотрудник)
|
Molecular Neurobiology |
|
|
A comparative study performed in mice investigating the action of DF302, a novel fluoride-containing gamma-carboline derivative, in comparison to the structurally similar neuroprotective drug dimebon. Drug effects on learning and memory, emotionality, hippocampal neurogenesis and mitochondrial functions, as well as AMPA-mediated currents and the 5-HT6 receptor are reported. In the step-down avoidance and fear-conditioning paradigms, bolus administration of drugs at doses of 10 or 40 mg/kg showed that only the higher dose of DF302 improved long-term memory while dimebon was ineffective at either dosage. Short-term memory and fear extinction remained unaltered across treatment groups. During the 5-day predation stress paradigm, oral drug treatment over a period of 2 weeks at the higher dosage regimen decreased anxiety-like behaviour. Both compounds supressed inter-male aggression in CD1 mice, the most eminent being the effects of DF302 in its highest dose. DF302 at the higher dose decreased floating behaviour in a 2-day swim test and after 21-day ultrasound stress. The density of Ki67-positive cells, a marker of adult neurogenesis, was reduced in the dentate gyrus of stressed dimebon-treated and non-treated mice, but not in DF302-treated mice. Non-stressed mice that received DF302 had a higher density of Ki67-positive cells than controls unlike dimebon-treated mice. Similar to dimebon, DF302 effectively potentiated AMPA receptor-mediated currents, bound to the 5-HT6 receptor, inhibited mitochondrial permeability transition and displayed cytoprotective properties in cellular models of neurodegeneration. Thus, DF302 exerts multi-target effects on the key mechanisms of neurodegenerative pathologies and can be considered as an optimized novel analogue of the neuroprotective agent dimebon.
Читать
тезис
|