Acute IL-1RA treatment suppresses the peripheral and central inflammatory response to spinal cord injury
|
01.12.2021 |
Yates A.G.
Jogia T.
Gillespie E.R.
Couch Y.
Ruitenberg M.J.
Anthony D.C.
|
Journal of Neuroinflammation |
10.1186/s12974-020-02050-6 |
0 |
Ссылка
© 2021, The Author(s). Background: The acute phase response (APR) to CNS insults contributes to the overall magnitude and nature of the systemic inflammatory response. Aspects of this response are thought to drive secondary inflammatory pathology at the lesion site, and suppression of the APR can therefore afford some neuroprotection. In this study, we examined the APR in a mouse model of traumatic spinal cord injury (SCI), along with its relationship to neutrophil recruitment during the immediate aftermath of the insult. We specifically investigated the effect of IL-1 receptor antagonist (IL-1RA) administration on the APR and leukocyte recruitment to the injured spinal cord. Methods: Adult female C57BL/6 mice underwent either a 70kD contusive SCI, or sham surgery, and tissue was collected at 2, 6, 12, and 24 hours post-operation. For IL-1RA experiments, SCI mice received two intraperitoneal injections of human IL-1RA (100mg/kg), or saline as control, immediately following, and 5 hours after impact, and animals were sacrificed 6 hours later. Blood, spleen, liver and spinal cord were collected to study markers of central and peripheral inflammation by flow cytometry, immunohistochemistry and qPCR. Results were analysed by two-way ANOVA or student’s t-test, as appropriate. Results: SCI induced a robust APR, hallmarked by elevated hepatic expression of pro-inflammatory marker genes and a significantly increased neutrophil presence in the blood, liver and spleen of these animals, as early as 2 hours after injury. This peripheral response preceded significant neutrophil infiltration of the spinal cord, which peaked 24 hours post-SCI. Although expression of IL-1RA was also induced in the liver following SCI, its response was delayed compared to IL-1β. Exogenous administration of IL-1RA during this putative therapeutic window was able to suppress the hepatic APR, as evidenced by a reduction in CXCL1 and SAA-2 expression as well as a significant decrease in neutrophil infiltration in both the liver and the injured spinal cord itself. Conclusions: Our data indicate that peripheral administration of IL-1RA can attenuate the APR which in turn reduces immune cell infiltration at the spinal cord lesion site. We propose IL-1RA treatment as a viable therapeutic strategy to minimise the harmful effects of SCI-induced inflammation.
Читать
тезис
|
Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders
|
01.12.2021 |
Markov A.
Thangavelu L.
Aravindhan S.
Zekiy A.O.
Jarahian M.
Chartrand M.S.
Pathak Y.
Marofi F.
Shamlou S.
Hassanzadeh A.
|
Stem Cell Research and Therapy |
10.1186/s13287-021-02265-1 |
0 |
Ссылка
Over recent years, mesenchymal stem/stromal cells (MSCs) and their potential biomedical applications have received much attention from the global scientific community in an increasing manner. Firstly, MSCs were successfully isolated from human bone marrow (BM), but in the next steps, they were also extracted from other sources, mostly from the umbilical cord (UC) and adipose tissue (AT). The International Society for Cellular Therapy (ISCT) has suggested minimum criteria to identify and characterize MSCs as follows: plastic adherence, surface expression of CD73, D90, CD105 in the lack of expression of CD14, CD34, CD45, and human leucocyte antigen-DR (HLA-DR), and also the capability to differentiate to multiple cell types including adipocyte, chondrocyte, or osteoblast in vitro depends on culture conditions. However, these distinct properties, including self-renewability, multipotency, and easy accessibility are just one side of the coin; another side is their huge secretome which is comprised of hundreds of mediators, cytokines, and signaling molecules and can effectively modulate the inflammatory responses and control the infiltration process that finally leads to a regulated tissue repair/healing or regeneration process. MSC-mediated immunomodulation is a direct result of a harmonic synergy of MSC-released signaling molecules (i.e., mediators, cytokines, and chemokines), the reaction of immune cells and other target cells to those molecules, and also feedback in the MSC-molecule-target cell axis. These features make MSCs a respectable and eligible therapeutic candidate to be evaluated in immune-mediated disorders, such as graft versus host diseases (GVHD), multiple sclerosis (MS), Crohn’s disease (CD), and osteoarthritis (OA), and even in immune-dysregulating infectious diseases such as the novel coronavirus disease 2019 (COVID-19). This paper discussed the therapeutic applications of MSC secretome and its biomedical aspects related to immune-mediated conditions. Sources for MSC extraction, their migration and homing properties, therapeutic molecules released by MSCs, and the pathways and molecular mechanisms possibly involved in the exceptional immunoregulatory competence of MSCs were discussed. Besides, the novel discoveries and recent findings on immunomodulatory plasticity of MSCs, clinical applications, and the methods required for their use as an effective therapeutic option in patients with immune-mediated/immune-dysregulating diseases were highlighted.
Читать
тезис
|
Use of alcohol, tobacco, cannabis, and other substances during the first wave of the SARS-CoV-2 pandemic in Europe: a survey on 36,000 European substance users
|
01.12.2021 |
Manthey J.
Kilian C.
Carr S.
Bartak M.
Bloomfield K.
Braddick F.
Gual A.
Neufeld M.
O’Donnell A.
Petruzelka B.
Rogalewicz V.
Rossow I.
Schulte B.
Rehm J.
|
Substance Abuse: Treatment, Prevention, and Policy |
10.1186/s13011-021-00373-y |
1 |
Ссылка
Background: SARS-CoV-2 reached Europe in early 2020 and disrupted the private and public life of its citizens, with potential implications for substance use. The objective of this study was to describe possible changes in substance use in the first months of the SARS-CoV-2 pandemic in Europe. Methods: Data were obtained from a cross-sectional online survey of 36,538 adult substance users from 21 European countries conducted between April 24 and July 22 of 2020. Self-perceived changes in substance use were measured by asking respondents whether their use had decreased (slightly or substantially), increased (slightly or substantially), or not changed during the past month. The survey covered alcohol (frequency, quantity, and heavy episodic drinking occasions), tobacco, cannabis, and other illicit drug use. Sample weighted data were descriptively analysed and compared across substances. Results: Across all countries, use of all substances remained unchanged for around half of the respondents, while the remainder reported either a decrease or increase in their substance use. For alcohol use, overall, a larger proportion of respondents indicated a decrease than those reporting an increase. In contrast, more respondents reported increases in their tobacco and cannabis use during the previous month compared to those reporting decreased use. No distinct direction of change was reported for other substance use. Conclusions: Our findings suggest changes in use of alcohol, tobacco and cannabis during the initial months of the pandemic in several European countries. This study offers initial insights into changes in substance use. Other data sources, such as sales statistics, should be used to corroborate these preliminary findings.
Читать
тезис
|
Mental ill-health during COVID-19 confinement
|
01.12.2021 |
Jané-Llopis E.
Anderson P.
Segura L.
Zabaleta E.
Muñoz R.
Ruiz G.
Rehm J.
Cabezas C.
Colom J.
|
BMC Psychiatry |
10.1186/s12888-021-03191-5 |
0 |
Ссылка
Background: Confinement due to COVID-19 has increased mental ill-health. Few studies unpack the risk and protective factors associated with mental ill-health and addictions that might inform future preparedness. Methods: Cross-sectional on-line survey with 37,810 Catalan residents aged 16+ years from 21 April to 20 May 2020 reporting prevalence of mental ill-health and substance use and associated coping strategies and behaviours. Results: Weighted prevalence of reported depression, anxiety and lack of mental well-being was, respectively, 23, 26, and 75%, each three-fold higher than before confinement. The use of prescribed hypnosedatives was two-fold and of non-prescribed hypnosedatives ten-fold higher than in 2018. Women, younger adults and students were considerably more likely, and older and retired people considerably less likely to report mental ill-health. High levels of social support, dedicating time to oneself, following a routine, and undertaking relaxing activities were associated with half the likelihood of reported mental ill-health. Worrying about problems living at home, the uncertainty of when normality would return, and job loss were associated with more than one and a half times the likelihood of mental ill-health. With the possible exception of moderately severe and severe depression, length of confinement had no association with reported mental ill-health. Conclusions: The trebling of psychiatric symptomatology might lead to either to under-identification of cases and treatment gap, or a saturation of mental health services if these are not matched with prevalence increases. Special attention is needed for the younger adult population. In the presence of potential new confinement, improved mental health literacy of evidence-based coping strategies and resilience building are urgently needed to mitigate mental ill-health.
Читать
тезис
|
Inhaled iloprost improves gas exchange in patients with COVID-19 and acute respiratory distress syndrome
|
01.12.2021 |
Tsareva N.A.
Avdeev S.N.
Kosanovic D.
Schermuly R.T.
Trushenko N.V.
Nekludova G.V.
|
Critical Care |
10.1186/s13054-021-03690-7 |
0 |
Ссылка
|
Pulsed laser reshaping and fragmentation of upconversion nanoparticles — from hexagonal prisms to 1D nanorods through “Medusa”-like structures
|
01.04.2021 |
Sajti L.
Karimov D.N.
Rocheva V.V.
Arkharova N.A.
Khaydukov K.V.
Lebedev O.I.
Voloshin A.E.
Generalova A.N.
Chichkov B.N.
Khaydukov E.V.
|
Nano Research |
10.1007/s12274-020-3163-4 |
0 |
Ссылка
© 2020, Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature. One dimensional (1D) nanostructures attract considerable attention, enabling a broad application owing to their unique properties. However, the precise mechanism of 1D morphology attainment remains a matter of debate. In this study, ultrafast picosecond (ps) laser-induced treatment on upconversion nanoparticles (UCNPs) is offered as a tool for 1D-nanostructures formation. Fragmentation, reshaping through recrystallization process and bioadaptation of initially hydrophobic (β-Na1.5Y1.5F6: Yb3+, Tm3+/β-Na1.5Y1.5F6) core/shell nanoparticles by means of one-step laser treatment in water are demonstrated. “True” 1D nanostructures through “Medusa”-like structures can be obtained, maintaining anti-Stokes luminescence functionalities. A matter of the one-dimensional UCNPs based on direction of energy migration processes is debated. The proposed laser treatment approach is suitable for fast UCNP surface modification and nano-to-nano transformation, that open unique opportunities to expand UCNP applications in industry and biomedicine. [Figure not available: see fulltext.].
Читать
тезис
|
Ultra-high sensitivity and selectivity of Au nanoparticles modified MoO<inf>3</inf> nanobelts towards 1-butylamine
|
15.03.2021 |
Fu H.
Wu Z.
Yang X.
He P.
An X.
Xiong S.
Han D.
|
Applied Surface Science |
10.1016/j.apsusc.2020.148721 |
0 |
Ссылка
© 2020 This study demonstrates an ultra-sensitive material towards 1-butylamine. The material is composed of 4 wt% Au nanoparticles decorated on MoO3 nanobelts, which are prepared via the hydrothermal method and in-situ reduction. The related characterizations reveal that the nanobelts are highly crystallized layer structures with a width of ~ 200 nm, a thickness of 40 nm and a length of several micrometers. The Au/MoO3 composites exhibit ultra-high sensing response (~300) towards 100 ppm of 1-butylamine at the working temperature of 240 °C. Even without Au decoration, the pristine MoO3 nanobelts offer the response as high as ~ 90 toward the same concentration of 1-butylamine at the temperature of 340 °C, much higher than the existing materials. More importantly, the proposal materials have excellent selectivity towards 1-butylamine, which offers the possibility for practical use. The excellent sensing performance is attributed to the unique sensing mechanism of the layered MoO3 nanobelts via catalytic reaction between 1-butylamine and the lattice oxygen of MoO3. Besides, Au decoration enables to enhance the adsorption of 1-butylamine and facilitate the catalytic sensing process, resulting in further increase in sensing response and selectivity of 1-butylamine. This study may shield light on a promising high-performance gas sensing materials to detect amines in practical application.
Читать
тезис
|
Recombinant tissue plasminogen activator treatment for COVID-19 associated ARDS and acute cor pulmonale
|
01.03.2021 |
Kosanovic D.
Yaroshetskiy A.I.
Tsareva N.A.
Merzhoeva Z.M.
Trushenko N.V.
Nekludova G.V.
Schermuly R.T.
Avdeev S.N.
|
International Journal of Infectious Diseases |
10.1016/j.ijid.2020.12.043 |
0 |
Ссылка
© 2020 The Author(s) Existing literature highlights the fact that patients with COVID-19 exhibit alterations in the coagulation process and are associated with respiratory and cardiovascular diseases, including acute respiratory distress syndrome and acute cor pulmonale. In this report, we describe the effects of systemic thrombolysis on acute cor pulmonale in a patient suffering from COVID-19. We demonstrated that systemic thrombolysis successfully improved the hemodynamics of our patient and resulted in a prominent reduction in hypercapnia, alveolar dead space, and ventilatory ratio.
Читать
тезис
|
Characterization of intracellular buffering power in human induced pluripotent stem cells and the loss of pluripotency is delayed by acidic stimulation and increase of NHE1 activity
|
01.02.2021 |
Lee S.P.
Chao S.C.
Chou M.F.
Huang S.F.
Dai N.T.
Wu G.J.
Tsai C.S.
Loh S.H.
Tsai Y.T.
|
Journal of Cellular Physiology |
10.1002/jcp.29959 |
0 |
Ссылка
© 2020 Wiley Periodicals LLC The homeostasis of intracellular pH (pHi) affects many cellular functions. Our previous study has established a functional and molecular model of the active pHi regulators in human induced pluripotent stem cells (hiPSCs). The aims of the present study were to further quantify passive pHi buffering power (β) and to investigate the effects of extracellular pH and Na+–H+ exchanger 1 (NHE1) activity on pluripotency in hiPSCs. pHi was detected by microspectrofluorimetry with pH-sensitive dye-BCECF. Western blot, immunofluorescence staining, and flow cytometry were used to detect protein expression and pluripotency. Our study in hiPSCs showed that (a) the value of total (βtot), intrinsic (βi), and CO2-dependent ((Formula presented.)) buffering power all increased while pHi increased; (b) during the spontaneous differentiation for 4 days, the β values of βtot and (Formula presented.) changed in a tendency of decrease, despite the absence of statistical significance; (c) an acidic cultured environment retained pluripotency and further upregulated expression and activity of NHE1 during spontaneous differentiation; (d) inhibition on NHE1 activity promoted the loss of pluripotency. In conclusion, we, for the first time, established a quantitative model of passive β during differentiation and demonstrated that maintenance of NHE1 at a higher level was of critical importance for pluripotency retention in hiPSCs.
Читать
тезис
|
Codelivery of STAT3 and PD-L1 siRNA by hyaluronate-TAT trimethyl/thiolated chitosan nanoparticles suppresses cancer progression in tumor-bearing mice
|
01.02.2021 |
Bastaki S.
Aravindhan S.
Ahmadpour Saheb N.
Afsari Kashani M.
Dorofeev A.E.
Karoon Kiani F.
Jahandideh H.
Beigi Dargani F.
Aksoun M.
Nikkhoo A.
Masjedi A.
Mahmoodpoor A.
Ahmadi M.
Dolati S.
Namvar S.
Jadidi-Niaragh F.
|
Life Sciences |
10.1016/j.lfs.2020.118847 |
0 |
Ссылка
© 2020 Immunotherapy methods using potential tumor microenvironment modulators have elicited durable therapeutic responses in cancer treatment. Immune checkpoint molecule programmed cell death-ligand 1 (PD-L1) and oncogenic transcription factor STAT3 (signal transducer and activator of transcription-3) assigned as inhibitory targets of our study and particular delivery system designed to deliver small interfering RNAs (siRNAs) to silence the targeted genes. Generated trimethyl chitosan (TMC) and thiolated chitosan (TC) nanoparticles (NPs) conjugated with HIV-1-derived TAT peptide and HA (hyaluronic acid) exhibited eligible physicochemical characteristics, notable siRNA encapsulation, serum stability, non-toxicity, controlled siRNA release, and extensive cellular uptake by cancer cells. Dual inhibition with STAT3/PD-L1 siRNA-loaded HA-TAT-TMC-TC NPs led to promising results, including significant downregulation of PD-L1 and STAT3 genes, striking suppressive effects on proliferation, migration, and angiogenesis of breast and melanoma cancer cell lines, and restrained tumor growth in vivo. These findings infer the capability of HA-TAT-TMC-TC NPs containing STAT3/PD-L1 siRNAs as a novel tumor-suppressive candidate in cancer treatment.
Читать
тезис
|
Potential immuno-nanomedicine strategies to fight COVID-19 like pulmonary infections
|
01.02.2021 |
Bonam S.R.
Kotla N.G.
Bohara R.A.
Rochev Y.
Webster T.J.
Bayry J.
|
Nano Today |
10.1016/j.nantod.2020.101051 |
0 |
Ссылка
© 2020 Elsevier Ltd COVID-19, coronavirus disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic. At the time of writing this (October 14, 2020), more than 38.4 million people have become affected, and 1.0 million people have died across the world. The death rate is undoubtedly correlated with the cytokine storm and other pathological pulmonary characteristics, as a result of which the lungs cannot provide sufficient oxygen to the body's vital organs. While diversified drugs have been tested as a first line therapy, the complexity of fatal cases has not been reduced so far, and the world is looking for a treatment to combat the virus. However, to date, and despite such promise, we have received very limited information about the potential of nanomedicine to fight against COVID-19 or as an adjunct therapy in the treatment regimen. Over the past two decades, various therapeutic strategies, including direct-acting antiviral drugs, immunomodulators, a few non-specific drugs (simple to complex), have been explored to treat Acute Respiratory Distress Syndrome (ARDS), Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS), influenza, and sometimes the common flu, thus, correlating and developing specific drugs centric to COVID-19 is possible. This review article focuses on the pulmonary pathology caused by SARS-CoV-2 and other viral pathogens, highlighting possible nanomedicine therapeutic strategies that should be further tested immediately.
Читать
тезис
|
Potential immuno-nanomedicine strategies to fight COVID-19 like pulmonary infections
|
01.02.2021 |
Bonam S.R.
Kotla N.G.
Bohara R.A.
Rochev Y.
Webster T.J.
Bayry J.
|
Nano Today |
10.1016/j.nantod.2020.101051 |
0 |
Ссылка
© 2020 Elsevier Ltd COVID-19, coronavirus disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic. At the time of writing this (October 14, 2020), more than 38.4 million people have become affected, and 1.0 million people have died across the world. The death rate is undoubtedly correlated with the cytokine storm and other pathological pulmonary characteristics, as a result of which the lungs cannot provide sufficient oxygen to the body's vital organs. While diversified drugs have been tested as a first line therapy, the complexity of fatal cases has not been reduced so far, and the world is looking for a treatment to combat the virus. However, to date, and despite such promise, we have received very limited information about the potential of nanomedicine to fight against COVID-19 or as an adjunct therapy in the treatment regimen. Over the past two decades, various therapeutic strategies, including direct-acting antiviral drugs, immunomodulators, a few non-specific drugs (simple to complex), have been explored to treat Acute Respiratory Distress Syndrome (ARDS), Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS), influenza, and sometimes the common flu, thus, correlating and developing specific drugs centric to COVID-19 is possible. This review article focuses on the pulmonary pathology caused by SARS-CoV-2 and other viral pathogens, highlighting possible nanomedicine therapeutic strategies that should be further tested immediately.
Читать
тезис
|
Corticosteroids for Patients With Coronavirus Disease 2019 (COVID-19) With Different Disease Severity: A Meta-Analysis of Randomized Clinical Trials
|
01.02.2021 |
Pasin L.
Navalesi P.
Zangrillo A.
Kuzovlev A.
Likhvantsev V.
Hajjar L.A.
Fresilli S.
Lacerda M.V.G.
Landoni G.
|
Journal of Cardiothoracic and Vascular Anesthesia |
10.1053/j.jvca.2020.11.057 |
0 |
Ссылка
© 2020 Elsevier Inc. Objectives: Efficacy and safety of corticosteroids in patients with 2019-nCoV (novel coronavirus 2019) infection still are debated. Because large randomized clinical trials (RCTs) and a well-conducted meta-analysis on the use of corticosteroids, focused on patients with coronavirus disease (COVID-19) in intensive care units, recently were published, a meta-analysis of RCTs on corticosteroids therapy in patients with different disease severity was performed to evaluate the effect on survival. Design: A meta-analyses of RCTs was performed. Setting: Patients admitted to hospital. Participants: Patients with coronavirus disease. Interventions: Administration of corticosteroids. Measurements and Main Results: A search was performed for RCTs of adult patients with acute hypoxemic failure related to 2019-nCoV infection who received corticosteroids versus any comparator. The primary endpoint was mortality rate. Five RCTs involving 7,692 patients were included. Overall mortality of patients treated with corticosteroids was slightly but significantly lower than mortality of controls (26% v 28%, relative risk {RR} = 0.89 [95% confidence interval {CI} 0.82-0.96], p = 0.003). The same beneficial effect was found in the subgroup of patients requiring mechanical ventilation (RR = 0.85 [95% CI 0.72-1.00], p = 0.05 number needed to treat {NNT} = 19). Remarkably, corticosteroids increased mortality in the subgroup of patients not requiring oxygen (17% v 13%, RR = 1.23 [95% CI 1.00-1.62], p = 0.05 number needed to harm {NNH} = 29). Tests for comparison between mechanically ventilated subgroups and those not requiring oxygen confirmed that treatment with corticosteroids had a statistically significant different effect on survival. Patients treated with corticosteroids had a significantly lower risk of need for mechanical ventilation. Conclusions: Corticosteroids may be considered in severe critically ill patients with COVID-19 but must be discouraged in patients not requiring oxygen therapy. Urgently, further trials are warranted before implementing this treatment worldwide.
Читать
тезис
|
Resolving the paradox of ferroptotic cell death: Ferrostatin-1 binds to 15LOX/PEBP1 complex, suppresses generation of peroxidized ETE-PE, and protects against ferroptosis
|
01.01.2021 |
Anthonymuthu T.S.
Tyurina Y.Y.
Sun W.Y.
Mikulska-Ruminska K.
Shrivastava I.H.
Tyurin V.A.
Cinemre F.B.
Dar H.H.
VanDemark A.P.
Holman T.R.
Sadovsky Y.
Stockwell B.R.
He R.R.
Bahar I.
Bayır H.
Kagan V.E.
|
Redox Biology |
10.1016/j.redox.2020.101744 |
0 |
Ссылка
© 2020 The Authors Hydroperoxy-eicosatetraenoyl-phosphatidylethanolamine (HpETE-PE) is a ferroptotic cell death signal. HpETE-PE is produced by the 15-Lipoxygenase (15LOX)/Phosphatidylethanolamine Binding Protein-1 (PEBP1) complex or via an Fe-catalyzed non-enzymatic radical reaction. Ferrostatin-1 (Fer-1), a common ferroptosis inhibitor, is a lipophilic radical scavenger but a poor 15LOX inhibitor arguing against 15LOX having a role in ferroptosis. In the current work, we demonstrate that Fer-1 does not affect 15LOX alone, however, it effectively inhibits HpETE-PE production by the 15LOX/PEBP1 complex. Computational molecular modeling shows that Fer-1 binds to the 15LOX/PEBP1 complex at three sites and could disrupt the catalytically required allosteric motions of the 15LOX/PEBP1 complex. Using nine ferroptosis cell/tissue models, we show that HpETE-PE is produced by the 15LOX/PEBP1 complex and resolve the long-existing Fer-1 anti-ferroptotic paradox.
Читать
тезис
|
Resolving the paradox of ferroptotic cell death: Ferrostatin-1 binds to 15LOX/PEBP1 complex, suppresses generation of peroxidized ETE-PE, and protects against ferroptosis
|
01.01.2021 |
Anthonymuthu T.S.
Tyurina Y.Y.
Sun W.Y.
Mikulska-Ruminska K.
Shrivastava I.H.
Tyurin V.A.
Cinemre F.B.
Dar H.H.
VanDemark A.P.
Holman T.R.
Sadovsky Y.
Stockwell B.R.
He R.R.
Bahar I.
Bayır H.
Kagan V.E.
|
Redox Biology |
10.1016/j.redox.2020.101744 |
0 |
Ссылка
© 2020 The Authors Hydroperoxy-eicosatetraenoyl-phosphatidylethanolamine (HpETE-PE) is a ferroptotic cell death signal. HpETE-PE is produced by the 15-Lipoxygenase (15LOX)/Phosphatidylethanolamine Binding Protein-1 (PEBP1) complex or via an Fe-catalyzed non-enzymatic radical reaction. Ferrostatin-1 (Fer-1), a common ferroptosis inhibitor, is a lipophilic radical scavenger but a poor 15LOX inhibitor arguing against 15LOX having a role in ferroptosis. In the current work, we demonstrate that Fer-1 does not affect 15LOX alone, however, it effectively inhibits HpETE-PE production by the 15LOX/PEBP1 complex. Computational molecular modeling shows that Fer-1 binds to the 15LOX/PEBP1 complex at three sites and could disrupt the catalytically required allosteric motions of the 15LOX/PEBP1 complex. Using nine ferroptosis cell/tissue models, we show that HpETE-PE is produced by the 15LOX/PEBP1 complex and resolve the long-existing Fer-1 anti-ferroptotic paradox.
Читать
тезис
|
Resolving the paradox of ferroptotic cell death: Ferrostatin-1 binds to 15LOX/PEBP1 complex, suppresses generation of peroxidized ETE-PE, and protects against ferroptosis
|
01.01.2021 |
Anthonymuthu T.S.
Tyurina Y.Y.
Sun W.Y.
Mikulska-Ruminska K.
Shrivastava I.H.
Tyurin V.A.
Cinemre F.B.
Dar H.H.
VanDemark A.P.
Holman T.R.
Sadovsky Y.
Stockwell B.R.
He R.R.
Bahar I.
Bayır H.
Kagan V.E.
|
Redox Biology |
10.1016/j.redox.2020.101744 |
0 |
Ссылка
© 2020 The Authors Hydroperoxy-eicosatetraenoyl-phosphatidylethanolamine (HpETE-PE) is a ferroptotic cell death signal. HpETE-PE is produced by the 15-Lipoxygenase (15LOX)/Phosphatidylethanolamine Binding Protein-1 (PEBP1) complex or via an Fe-catalyzed non-enzymatic radical reaction. Ferrostatin-1 (Fer-1), a common ferroptosis inhibitor, is a lipophilic radical scavenger but a poor 15LOX inhibitor arguing against 15LOX having a role in ferroptosis. In the current work, we demonstrate that Fer-1 does not affect 15LOX alone, however, it effectively inhibits HpETE-PE production by the 15LOX/PEBP1 complex. Computational molecular modeling shows that Fer-1 binds to the 15LOX/PEBP1 complex at three sites and could disrupt the catalytically required allosteric motions of the 15LOX/PEBP1 complex. Using nine ferroptosis cell/tissue models, we show that HpETE-PE is produced by the 15LOX/PEBP1 complex and resolve the long-existing Fer-1 anti-ferroptotic paradox.
Читать
тезис
|
Effect of lipopolysaccharide structure on functional response of whole blood cells
|
01.01.2021 |
Zubova S.V.
Grachev S.V.
Prokhorenko I.R.
|
Immunobiology |
10.1016/j.imbio.2020.152030 |
0 |
Ссылка
© 2020 Elsevier GmbH Lipopolysaccharides (LPSs) induce a wide spectrum of functional activities after interaction with blood cells. Effect of structure of toxic LPS from S- and Re-chemotypes of E. coli and/or non-toxic LPS of Rhodobacter capsulatus PG (R. caps.) on activation of neutrophils and monocytes of human whole blood were studied, particularly, expression of TLR4, CD14 and CD11b receptors, phagocytosis of BioParticles Alexa Fluor 488, synthesis of cytokines and chemokines. A leading role of CD11b receptor in phagocytic activity of neutrophils primed by LPS from various E. coli chemotypes was shown. The non-toxic LPS of R. caps. does not affect the efficiency of phagocytosis activity of the neutrophils. The LPS of R. caps. was shown to induce production of TRIF-dependent cytokine IFN-β in human whole blood leukocytes selectively, without activating MyD88-dependent pathway of pro-inflammatory cytokine synthesis, displaying properties of patrial agonist of TLR4. Structure and biological activity of LPS R. caps. allows considering it as a promising immunity stimulating pharmacological agent.
Читать
тезис
|
Effect of lipopolysaccharide structure on functional response of whole blood cells
|
01.01.2021 |
Zubova S.V.
Grachev S.V.
Prokhorenko I.R.
|
Immunobiology |
10.1016/j.imbio.2020.152030 |
0 |
Ссылка
© 2020 Elsevier GmbH Lipopolysaccharides (LPSs) induce a wide spectrum of functional activities after interaction with blood cells. Effect of structure of toxic LPS from S- and Re-chemotypes of E. coli and/or non-toxic LPS of Rhodobacter capsulatus PG (R. caps.) on activation of neutrophils and monocytes of human whole blood were studied, particularly, expression of TLR4, CD14 and CD11b receptors, phagocytosis of BioParticles Alexa Fluor 488, synthesis of cytokines and chemokines. A leading role of CD11b receptor in phagocytic activity of neutrophils primed by LPS from various E. coli chemotypes was shown. The non-toxic LPS of R. caps. does not affect the efficiency of phagocytosis activity of the neutrophils. The LPS of R. caps. was shown to induce production of TRIF-dependent cytokine IFN-β in human whole blood leukocytes selectively, without activating MyD88-dependent pathway of pro-inflammatory cytokine synthesis, displaying properties of patrial agonist of TLR4. Structure and biological activity of LPS R. caps. allows considering it as a promising immunity stimulating pharmacological agent.
Читать
тезис
|
Noninvasive ventilation for acute hypoxemic respiratory failure in patients with COVID-19
|
01.01.2021 |
Avdeev S.N.
Yaroshetskiy A.I.
Tsareva N.A.
Merzhoeva Z.M.
Trushenko N.V.
Nekludova G.V.
Chikina S.Y.
|
American Journal of Emergency Medicine |
10.1016/j.ajem.2020.09.075 |
0 |
Ссылка
© 2020 Elsevier Inc. Aim: Noninvasive ventilation (NIV) is known to reduce intubation in patients with acute hypoxemic respiratory failure (AHRF). We aimed to assess the outcomes of NIV application in COVID-19 patients with AHRF. Materials & methods: In this retrospective cohort study, patients with confirmed diagnosis of COVID-19 and AHRF receiving NIV in general wards were recruited from two university-affiliated hospitals. Demographic, clinical, and laboratory data were recorded at admission. The failure of NIV was defined as intubation or death during the hospital stay. Results: Between April 8 and June 10, 2020, 61 patients were enrolled into the final cohort. NIV was successful in 44 out of 61 patients (72.1%), 17 patients who failed NIV therapy were intubated, and among them 15 died. Overall mortality rate was 24.6%. Patients who failed NIV were older, and had higher respiratory rate, PaCO2, D-dimer levels before NIV and higher minute ventilation and ventilatory ratio on the 1-st day of NIV. No healthcare workers were infected with SARS-CoV-2 during the study period. Conclusions: NIV is feasible in patients with COVID-19 and AHRF outside the intensive care unit, and it can be considered as a valuable option for the management of AHRF in these patients.
Читать
тезис
|
Noninvasive ventilation for acute hypoxemic respiratory failure in patients with COVID-19
|
01.01.2021 |
Avdeev S.N.
Yaroshetskiy A.I.
Tsareva N.A.
Merzhoeva Z.M.
Trushenko N.V.
Nekludova G.V.
Chikina S.Y.
|
American Journal of Emergency Medicine |
10.1016/j.ajem.2020.09.075 |
0 |
Ссылка
© 2020 Elsevier Inc. Aim: Noninvasive ventilation (NIV) is known to reduce intubation in patients with acute hypoxemic respiratory failure (AHRF). We aimed to assess the outcomes of NIV application in COVID-19 patients with AHRF. Materials & methods: In this retrospective cohort study, patients with confirmed diagnosis of COVID-19 and AHRF receiving NIV in general wards were recruited from two university-affiliated hospitals. Demographic, clinical, and laboratory data were recorded at admission. The failure of NIV was defined as intubation or death during the hospital stay. Results: Between April 8 and June 10, 2020, 61 patients were enrolled into the final cohort. NIV was successful in 44 out of 61 patients (72.1%), 17 patients who failed NIV therapy were intubated, and among them 15 died. Overall mortality rate was 24.6%. Patients who failed NIV were older, and had higher respiratory rate, PaCO2, D-dimer levels before NIV and higher minute ventilation and ventilatory ratio on the 1-st day of NIV. No healthcare workers were infected with SARS-CoV-2 during the study period. Conclusions: NIV is feasible in patients with COVID-19 and AHRF outside the intensive care unit, and it can be considered as a valuable option for the management of AHRF in these patients.
Читать
тезис
|