Tricalcium phosphate cement supplemented with boron nitride nanotubes with enhanced biological properties
|
01.09.2020 |
Rau J.V.
Fosca M.
Fadeeva I.V.
Kalay S.
Culha M.
Raucci M.G.
Fasolino I.
Ambrosio L.
Antoniac I.V.
Uskoković V.
|
Materials Science and Engineering C |
10.1016/j.msec.2020.111044 |
0 |
Ссылка
© 2020 Elsevier B.V. A self-setting bone cement containing β-tricalcium phosphate (TCP) supplemented with boron nitride nanotubes (BNNTs, 1 wt%) was synthesized and analyzed in situ for its kinetics of hardening and selected physicochemical and biological properties. Moderately delayed due to the presence of BNNTs, the hardening reaction involved the transformation of the TCP precursor to the dicalcium phosphate (DCPD) product. In spite of the short-lived chemical transformations in the cement upon its hardening, the structural changes in it were extended. As a result, the compressive strength increased from day 1 to day 7 of the hardening reaction and the presence of BNNTs further increased it by ~25%. Fitting of the time-resolved energy-dispersive diffractometric data to the Johnson-Mehl-Avrami-Kolmogorov crystallization kinetics model conformed to the one-dimensional nucleation at a variable rate during the growth of elongated DCPD crystals from round TCP grains. For the first seven days of growth of human mesenchymal stem cells (hMSCs) on the cement, no difference in their proliferation was observed compared to the control. However, between the 7th and the 21st day, the cell proliferation decreased compared to the control because of the ongoing stem cell differentiation toward the osteoblast phenotype. This differentiation was accompanied by the higher expression of alkaline phosphatase, an early marker of hMSC differentiation into a pre-osteoblast phenotype. The TCP cement supplemented with BNNTs was able to thwart the production of reactive oxygen species (ROS) in hMSCs treated with H2O2/Fe2+ and bring the ROS levels down to the concentrations detected in the control cells, indicating the good capability of the material to protect the cells against the ROS-associated damage. Simultaneously, the cement increased the expression of mediators of inflammation in a co-culture of osteoblasts and macrophages, thus attesting to the direct reciprocity between the degrees of inflammation and stimulated new bone production.
Читать
тезис
|
Mitochondrial permeability transition pore is involved in oxidative burst and NETosis of human neutrophils
|
01.05.2020 |
Vorobjeva N.
Galkin I.
Pletjushkina O.
Golyshev S.
Zinovkin R.
Prikhodko A.
Pinegin V.
Kondratenko I.
Pinegin B.
Chernyak B.
|
Biochimica et Biophysica Acta - Molecular Basis of Disease |
10.1016/j.bbadis.2020.165664 |
0 |
Ссылка
© 2020 Elsevier B.V. Neutrophils release neutrophil extracellular traps (NETs) in response to numerous pathogenic microbes as the last suicidal resource (NETosis) in the fight against infection. Apart from the host defense function, NETs play an essential role in the pathogenesis of various autoimmune and inflammatory diseases. Therefore, understanding the molecular mechanisms of NETosis is important for regulating aberrant NET release. The initiation of NETosis after the recognition of pathogens by specific receptors is mediated by an increase in intracellular Ca2+ concentration, therefore, the use of Ca2+ ionophore A23187 can be considered a semi-physiological model of NETosis. Induction of NETosis by various stimuli depends on reactive oxygen species (ROS) produced by NADPH oxidase, however, NETosis induced by Ca2+ ionophores was suggested to be mediated by ROS produced in mitochondria (mtROS). Using the mitochondria-targeted antioxidant SkQ1 and specific inhibitors of NADPH oxidase, we showed that both sources of ROS, mitochondria and NADPH oxidase, are involved in NETosis induced by A23187 in human neutrophils. In support of the critical role of mtROS, SkQ1-sensitive NETosis was demonstrated to be induced by A23187 in neutrophils from patients with chronic granulomatous disease (CGD). We assume that Ca2+-triggered mtROS production contributes to NETosis either directly (CGD neutrophils) or by stimulating NADPH oxidase. The opening of the mitochondrial permeability transition pore (mPTP) in neutrophils treated by A23187 was revealed using the electron transmission microscopy as a swelling of the mitochondrial matrix. Using specific inhibitors, we demonstrated that the mPTP is involved in mtROS production, NETosis, and the oxidative burst induced by A23187.
Читать
тезис
|
Lipid peroxidation is involved in calcium dependent upregulation of mitochondrial metabolism in skeletal muscle
|
01.03.2020 |
Al-Menhali A.
Banu S.
Angelova P.
Barcaru A.
Horvatovich P.
Abramov A.
Jaganjac M.
|
Biochimica et Biophysica Acta - General Subjects |
10.1016/j.bbagen.2019.129487 |
0 |
Ссылка
© 2019 Elsevier B.V. Background: Skeletal muscle cells continuously generate reactive oxygen species (ROS). Excessive ROS can affect lipids resulting in lipid peroxidation (LPO). Here we investigated the effects of myotube intracellular calcium-induced signaling eliciting contractions on the LPO induction and the impact of LPO-product 4-hydroxynonenal (4-HNE) on physiology/pathology of myotubes using C2C12 myoblasts. Methods: C2C12 myoblasts were differentiated into myotubes, stimulated with caffeine and analyzed for the induction of LPO and formation of 4-HNE protein adducts. Further effects of 4-HNE on mitochondrial bioenergetics, NADH level, mitochondrial density and expression of mitochondrial metabolism genes were determined. Results: Short and long-term caffeine stimulation of myotubes promoted superoxide production, LPO and formation of 4-HNE protein adducts. Furthermore, low 4-HNE concentrations had no effect on myotube viability and cellular redox homeostasis, while concentrations from 10 μM and above reduced myotube viability and significantly disrupted homeostasis. A time and dose-dependent 4-HNE effect on superoxide production and mitochondrial NADH-autofluorescence was observed. Finally, 4-HNE had strong impact on maximal respiration, spare respiratory capacity, ATP production, coupling efficiency of mitochondria and mitochondrial density. Conclusion: Data presented in this work make evident for the first time that pathological 4-HNE levels elicit damaging effects on skeletal muscle cells while acute exposure to physiological 4-HNE induces transient adaptation. General significance: This work suggests an important role of 4-HNE on the regulation of myotube's mitochondrial metabolism and cellular energy production. It further signifies the importance of skeletal muscle cells hormesis in response to acute stress in order to maintain essential biological functions.
Читать
тезис
|
Interrogating Parkinson's disease associated redox targets: Potential application of CRISPR editing
|
20.11.2019 |
Artyukhova M.
Tyurina Y.
Chu C.
Zharikova T.
Bayır H.
Kagan V.
Timashev P.
|
Free Radical Biology and Medicine |
10.1016/j.freeradbiomed.2019.06.007 |
1 |
Ссылка
© 2019 Elsevier Inc. Loss of dopaminergic neurons in the substantia nigra is one of the pathogenic hallmarks of Parkinson's disease, yet the underlying molecular mechanisms remain enigmatic. While aberrant redox metabolism strongly associated with iron dysregulation and accumulation of dysfunctional mitochondria is considered as one of the major contributors to neurodegeneration and death of dopaminergic cells, the specific anomalies in the molecular machinery and pathways leading to the PD development and progression have not been identified. The high efficiency and relative simplicity of a new genome editing tool, CRISPR/Cas9, make its applications attractive for deciphering molecular changes driving PD-related impairments of redox metabolism and lipid peroxidation in relation to mishandling of iron, aggregation and oligomerization of alpha-synuclein and mitochondrial injury as well as in mechanisms of mitophagy and programs of regulated cell death (apoptosis and ferroptosis). These insights into the mechanisms of PD pathology may be used for the identification of new targets for therapeutic interventions and innovative approaches to genome editing, including CRISPR/Cas9.
Читать
тезис
|
Insulin Protects Cortical Neurons Against Glutamate Excitotoxicity
|
24.09.2019 |
Krasil’nikova I.
Surin A.
Sorokina E.
Fisenko A.
Boyarkin D.
Balyasin M.
Demchenko A.
Pomytkin I.
Pinelis V.
|
Frontiers in Neuroscience |
10.3389/fnins.2019.01027 |
0 |
Ссылка
© Copyright © 2019 Krasil’nikova, Surin, Sorokina, Fisenko, Boyarkin, Balyasin, Demchenko, Pomytkin and Pinelis. Glutamate excitotoxicity is implicated in the pathogenesis of numerous diseases, such as stroke, traumatic brain injury, and Alzheimer’s disease, for which insulin resistance is a concomitant condition, and intranasal insulin treatment is believed to be a promising therapy. Excitotoxicity is initiated primarily by the sustained stimulation of ionotropic glutamate receptors and leads to a rise in intracellular Ca2+ ([Ca2+]i), followed by a cascade of intracellular events, such as delayed calcium deregulation (DCD), mitochondrial depolarization, adenosine triphosphate (ATP) depletion that collectively end in cell death. Therefore, cross-talk between insulin and glutamate signaling in excitotoxicity is of particular interest for research. In the present study, we investigated the effects of short-term insulin exposure on the dynamics of [Ca2+]i and mitochondrial potential in cultured rat cortical neurons during glutamate excitotoxicity. We found that insulin ameliorated the glutamate-evoked rise of [Ca2+]i and prevented the onset of DCD, the postulated point-of-no-return in excitotoxicity. Additionally, insulin significantly improved the glutamate-induced drop in mitochondrial potential, ATP depletion, and depletion of brain-derived neurotrophic factor (BDNF), which is a critical neuroprotector in excitotoxicity. Also, insulin improved oxygen consumption rates, maximal respiration, and spare respiratory capacity in neurons exposed to glutamate, as well as the viability of cells in the MTT assay. In conclusion, the short-term insulin exposure in our experiments was evidently a protective treatment against excitotoxicity, in a sharp contrast to chronic insulin exposure causal to neuronal insulin resistance, the adverse factor in excitotoxicity.
Читать
тезис
|
Reactive oxygen species and colorectal cancer
|
01.07.2018 |
Lin S.
Li Y.
Zamyatnin A.
Werner J.
Bazhin A.
|
Journal of Cellular Physiology |
|
18 |
Ссылка
© 2017 Wiley Periodicals, Inc. Colorectal cancer (CRC) has become the fourth leading cause of cancer-related death in the worldwide. It is urgent to find more effective therapeutic strategies for it. Reactive oxygen species (ROS) play multiple roles in normal cellular physiology processes. Thus, a certain level of ROS is essential to keep normal cellular function. However, the accumulation of ROS shows dual roles for cells, which is mainly dependent on the concentration of ROS, the origin of the cancer cell and the activated signaling pathways during tumor progression. In general, moderate level of ROS leads to cell damage, DNA mutation and inflammation, which promotes the initiation and development of cancer. Excessive high level of ROS induces cancer cell death, showing an anti-cancer role. ROS are commonly higher in CRC cells than their normal counterpart cells. Therefore, it is possible that ROS induce cell death in cancer cells while not affecting the normal cells, demonstrating lower side effects. Besides, ROS also play a role in tumor microenvironment and drug resistance. These multiple roles of ROS make them a promising therapeutic target for cancer. To explore potential ROS-target therapies against CRC, it is worth to comprehensively understanding the role of ROS in CRC and therapy. In this review, we mainly discuss the strategies of ROS in CRC therapy, including direct CRC cell target and indirect tumor environment target. In addition, the influences of ROS in drug resistance will also been discussed.
Читать
тезис
|
ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications
|
04.05.2018 |
Moldogazieva N.
Mokhosoev I.
Feldman N.
Lutsenko S.
|
Free Radical Research |
|
29 |
Ссылка
© 2018 Informa UK Limited, trading as Taylor & Francis Group. Over the last decade, a dual character of cell response to oxidative stress, eustress versus distress, has become increasingly recognized. A growing body of evidence indicates that under physiological conditions, low concentrations of reactive oxygen and nitrogen species (RONS) maintained by the activity of endogenous antioxidant system (AOS) allow reversible oxidative/nitrosative modifications of key redox-sensitive residues in regulatory proteins. The reversibility of redox modifications such as Cys S-sulphenylation/S-glutathionylation/S-nitrosylation/S-persulphidation and disulphide bond formation, or Tyr nitration, which occur through electrophilic attack of RONS to nucleophilic groups in amino acid residues provides redox switches in the activities of signalling proteins. Key requirement for the involvement of the redox modifications in RONS signalling including ROS-MAPK, ROS-PI3K/Akt, and RNS-TNF-α/NF-kB signalling is their specificity provided by a residue microenvironment and reaction kinetics. Glutathione, glutathione peroxidases, peroxiredoxins, thioredoxin, glutathione reductases, and glutaredoxins modulate RONS level and cell signalling, while some of the modulators (glutathione, glutathione peroxidases and peroxiredoxins) are themselves targets for redox modifications. Additionally, gene expression, activities of transcription factors, and epigenetic pathways are also under redox regulation. The present review focuses on RONS sources (NADPH-oxidases, mitochondrial electron-transportation chain (ETC), nitric oxide synthase (NOS), etc.), and their cross-talks, which influence reversible redox modifications of proteins as physiological phenomenon attained by living cells during the evolution to control cell signalling in the oxygen-enriched environment. We discussed recent advances in investigation of mechanisms of protein redox modifications and adaptive redox switches such as MAPK/PI3K/PTEN, Nrf2/Keap1, and NF-κB/IκB, powerful regulators of numerous physiological processes, also implicated in various diseases.
Читать
тезис
|
The mechanisms of development of pseudoallergic drug reactions and the prospects of personalized pharmacotherapy selection
|
01.01.2018 |
Kadyrova Z.
Teplyuk N.
|
Eksperimental'naya i Klinicheskaya Farmakologiya |
|
0 |
Ссылка
© Ruslania 2018. All rights reserved. Drug toxidermia is one of the most common skin diseases. Traditional therapy of drug toxidermia, which includes antihistamines and desensitizing agents, cannot stop manifestations of the pathological process in many cases, while the forced appointment of systemic glucocorticoids can lead to the development of un-desired complications. The review gives a detailed description of various mechanisms of drug toxidermia and provides information about the development of tests to identify patients with increased risk of drug toxidermia.
Читать
тезис
|
Prospects for drugs based on the mitochondria-targeting antioxidant SkQ1 in treatment of wounds with impaired healing
|
01.01.2018 |
Zinovkin R.
Popova E.
Pletjushkina O.
Ilyinskaya O.
Pisarev V.
Chernyak B.
|
Obshchaya Reanimatologiya |
|
0 |
Ссылка
© 2018, V.A. Negovsky Research Institute of General Reanimatology. All rights reserved. Chronic wounds with impared wound healing that require prolong time for healing remain unsolved problem of modern medicine. Excessive oxidative stress plays an important role in the pathogenesis of chronic wounds caused by aging, diabetes and other pathologies. This review is aimed at the role of mitochondria in oxidative stress and to the future prospects for using the innovative mitochondria targeted antioxidants for treatment of impaired wounds. Recent studies in old mice and mice with type 2 diabetes showed that the mitochondrial antioxidant SkQ1 [10- (6'- plastoquinonyl) decyltriphenylphosphonium] stimulates healing of full-thickness dermal wounds. SkQ1 accelerates inflammatory stage of wound healing, maturation of granulation tissue, angiogenesis and epithelization of wounds. The anti-inflammatory effect of SkQ1 is possibly connected to decreased inflammatory activation of the vascular endothelium, which is typical for aging, diabetes and other pathologies. Local administration of SkQ1 also accelerates wound healing and provides strong anti-inflammatory effect in the model of acute aseptic inflammation. In addition, SkQ1 to stimulate apoptosis of neutrophils and suppresses their activation, as well as suppresses inflammatory activation of mast cells. In the wound model in vitro, SkQ1 accelerates movement of epithelial cells and fibroblasts into the «wound» and stimulates differentiation of human subcutaneous fibroblasts to myofibroblasts. Reviewed data suggest that SkQ1-based topical drugs have a great potential to treat wounds that exhibit impaired healing also in patients suffering from chronic critical illness.
Читать
тезис
|