Electronic coupling between molybdenum disulfide and gold nanoparticles to enhance the peroxidase activity for the colorimetric immunoassays of hydrogen peroxide and cancer cells
|
15.10.2020 |
Sun H.
Gao Y.
Hu N.
Zhang Y.
Guo C.
Gao G.
Ma Z.
Ivan Ivanovich K.
Qiu Y.
|
Journal of Colloid and Interface Science |
10.1016/j.jcis.2020.06.001 |
0 |
Ссылка
© 2020 Elsevier Inc. Peroxidase nanoenzymes exhibit a specific affinity toward substrates, thereby demonstrating application potential for realizing the colorimetric immunoassays of hydrogen peroxide (H2O2), which can be further used as a probe for imaging cancer cells. To enhance the intrinsic peroxidase activity of molybdenum sulfide (MoS2) nanomaterials, gold (Au) nanoparticles with an average diameter of approximately 2.1 nm were modified on a MoS2/carbon surface (denoted as MoS2/C-Au600) via ascorbic acid reduction. MoS2/C-Au600 can oxidize 3,3′,5,5′-tetramethylbenzidine (TMB) to generate a blue oxidation product in the presence of H2O2; this product exhibits peroxidase-like activities, superior to those of most existing MoS2-based nanoenzymes. Furthermore, MoS2/C-Au600 exhibits a high detection capability for H2O2 in the range of 1 × 10−5 to 2 × 10−4 mol/L (R2 = 0.99), and the lowest detection limit is 1.82 µmol/L in a sodium acetate and acetic acid buffer solution. Steady state kinetics studies indicate that the catalytic mechanism is consistent with the ping-pong mechanism. Given its strong absorption peak at 652 nm in the visible region, MoS2/C-Au600 can be used to image cancer cells due to the enhanced permeability and retention effect. Our findings demonstrate that the synergistic electronic coupling between multiple components can enhance the peroxidase activity, which can facilitate the development of an effective, facile, and reliable method to perform colorimetric immunoassays of H2O2 and cancer cells.
Читать
тезис
|
Versatile Platform for Nanoparticle Surface Bioengineering Based on SiO <inf>2</inf> -Binding Peptide and Proteinaceous Barnase, Barstar Interface
|
23.05.2018 |
Shipunova V.
Zelepukin I.
Stremovskiy O.
Nikitin M.
Care A.
Sunna A.
Zvyagin A.
Deyev S.
|
ACS Applied Materials and Interfaces |
|
7 |
Ссылка
© 2018 American Chemical Society. Nanoparticle surface engineering can change its chemical identity to enable surface coupling with functional biomolecules. However, common surface coupling methods such as physical adsorption or chemical conjugation often suffer from the low coupling yield, poorly controllable orientation of biomolecules, and steric hindrance during target binding. These issues limit the application scope of nanostructures for theranostics and personalized medicine. To address these shortfalls, we developed a rapid and versatile method of nanoparticle biomodification. The method is based on a SiO 2 -binding peptide that binds to the nanoparticle surface and a protein adaptor system, Barnase∗Barstar protein pair, serving as a "molecular glue" between the peptide and the attached biomolecule. The biomodification procedure shortens to several minutes, preserves the orientation and functions of biomolecules, and enables control over the number and ratio of attached molecules. The capabilities of the proposed biomodification platform were demonstrated by coupling different types of nanoparticles with DARPin9.29 and 4D5scFv - molecules that recognize the human epidermal growth factor receptor 2 (HER2/neu) oncomarker - and by subsequent highly selective immunotargeting of the modified nanoparticles to different HER2/neu-overexpressing cancer cells in one-step or two-step (by pretargeting with HER2/neu-recognizing molecule) modes. The method preserved the biological activity of the DARPin9.29 molecules attached to a nanoparticle, whereas the state-of-the-art carbodiimide 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysulfosuccinimide method of conjugation led to a complete loss of the functional activity of the DARPin9.29 nanoparticle-protein complex. Moreover, the method allowed surface design of nanoparticles that selectively interacted with antigens in complex biological fluids, such as whole blood. The demonstrated capabilities show this method to be a promising alternative to commonly used chemical conjugation techniques in nanobiotechnology, theranostics, and clinical applications.
Читать
тезис
|