Год публикации:
Все года
2018
2019
2020
Название |
Дата публикации |
Коллектив авторов |
Журнал |
DOI |
Индекс цитирования |
Ссылка на источник |
Asialo-transferrin: Biochemical aspects and association with alcohol abuse investigation
|
01.08.2019 |
Paterlini V.
Porpiglia N.
De Palo E.
Tagliaro F.
|
Alcohol |
10.1016/j.alcohol.2019.03.002 |
0 |
Ссылка
© 2019 Elsevier Inc. Asialo-human transferrin (asialo-hTf) is a glycoform of the human serum protein transferrin characterized by the lack of the sialic acid (SA) terminal unit. It is known that glycosylation micro-heterogeneity and the presence of SA are strongly involved in protein functioning and pathophysiological activities. Some hTf glycoforms are valuable biomarkers for the detection of both genetic defects of glycosylation and/or sialoform distribution changes. The detection of the carbohydrate deficient transferrin (CDT) glycoforms is currently a widely employed method for the diagnosis of chronic alcohol abuse. The physiological significance of asialo-hTf is still unclear, despite its important biological implications. The current knowledge suggests that asialo-hTf may be involved in regulation of iron transport and release at the hepatic level, which, consequently, could strongly be affected by alcohol consumption. For these reasons, a deeper understanding of asialo-hTf structure and its physiological role is required, and an improved method of its analysis would favor the detection of both chronic abuse and other habits of alcohol intake and/or misuse. Thus, suitable analytical methods possessing higher sensitivity and specificity in comparison with the currently available techniques are certainly recommended. The present review summarizes the studies on asialo-hTf structure, roles, and detection techniques mainly in relation to its possible use as a potentially additional useful biomarker of alcohol abuse, and underlines its prospective value as a forensic and diagnostic tool.
Читать
тезис
|
Phospholipase D: Its Role in Metabolic Processes and Development of Diseases
|
01.07.2018 |
Ramenskaia G.
Melnik E.
Petukhov A.
|
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry |
|
0 |
Ссылка
© 2018, Pleiades Publishing, Ltd. Phospholipase D (PLD; EC 3.1.4.4) is one of the key enzymes catalyzing hydrolysis of cell membrane phospholipids. This review considers and summaries current knowledge about six human PLD isoforms, their structure and a role in physiological and pathological processes. Comparative analysis of PLD isoforms structure is presented. The review considers the mechanism of hydrolysis and transphosphatidylation performed by PLD, the role of PLD1 and PLD2 in the pathogenesis of some types of cancer, infectious, thrombotic, and neurodegenerative diseases is analyzed. The prospects of development of PLD isoformselective inhibitors are considered in the context of their clinical use and inclusion into various therapeutic schemes; the latter is especially important in the case of already developed PLD inhibitors. Phosphatidylethanol (PEth) formed in the human body during phospholipid transphosphatidylation catalyzed by PLD is considered as an alcohol abuse biomarker.
Читать
тезис
|
Phospholipase D: Its role in metabolism processes and disease development
|
01.01.2018 |
Ramenskaia G.
Melnik E.
Petukhov A.
|
Biomeditsinskaya Khimiya |
|
1 |
Ссылка
© 2018 Russian Academy of Medical Sciences. All rights reserved. Phospholipase D (PLD) is one of the key enzymes that catalyzes the hydrolysis of cell membrane phospholipids. In this review current knowledge about six human PLD isoforms, their structure and role in physiological and pathological processes is summarized. Comparative analysis of PLD isoforms structure is presented. The mechanism of the hydrolysis and transphosphatidylation performed by PLD is described. The PLD1 and PLD2 role in the pathogenesis of some cancer, infectious, thrombotic and neurodegenerative diseases is analyzed. The prospects of PLD isoform-selective inhibitors development are shown in the context of the clinical usage and the already-existing inhibitors are characterized. Moreover, the formation of phosphatidylethanol (PEth), the alcohol abuse biomarker, as the result of PLD-catalyzed phospholipid transphosphatidylation is considered.
Читать
тезис
|