Short- and medium-term exposures of diazepam induce metabolomic alterations associated with the serotonergic, dopaminergic, adrenergic and aspartic acid neurotransmitter systems in zebrafish (Danio rerio) embryos/larvae
|
01.06.2021 |
Markin P.A.
Brito A.
Moskaleva N.E.
Tagliaro F.
Tarasov V.V.
La Frano M.R.
Savitskii M.V.
Appolonova S.A.
|
Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics |
10.1016/j.cbd.2021.100816 |
0 |
Ссылка
© 2021 Elsevier Inc. Introduction: Diazepam is a well-known psychoactive drug widely used worldwide for the treatment of anxiety, seizures, alcohol withdrawal syndrome, muscle spasms, sleeplessness, agitation, and pre/post-operative sedation. It is part of the benzodiazepine family, substances known to primarily act by binding and enhancing gamma-aminobutyric acid (GABAA) receptors. The objective of the present work was to investigate the influence of short and medium-term diazepam exposures on neurotransmitters measured through targeted metabolomics using a zebrafish embryo model. Methods: Short-term (2.5 h) and medium-term (96 h) exposures to diazepam were performed at drug concentrations of 0.8, 1.6, 16, and 160 μg/L. Intervention groups were compared with a vehicle control group. Each group consisted of 20 zebrafish eggs/larvae. Metabolites related with neurotransmission were determined by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Results: Thirty-six compounds were quantified. Significantly increased tryptophan and serotonin concentrations were found in the intervention groups receiving higher doses of diazepam in 2.5 h exposure (p < 0.05 control versus intervention groups). Tyrosine concentrations were higher (p < 0.05) at higher concentrations in 2.5 h exposure, but lower (p < 0.05) at higher concentrations in 96 h exposure. Both phenylalanine and aspartic acid concentrations were higher (p < 0.05) at higher doses in 2.5 h and 96 h exposure. Conclusions: Short- and medium-term exposures to diazepam induce dose- and time-dependent metabolomic alterations associated with the serotonergic, dopaminergic/adrenergic, and aspartic acid neurotransmitter systems in zebrafish.
Читать
тезис
|
Short- and medium-term exposures of diazepam induce metabolomic alterations associated with the serotonergic, dopaminergic, adrenergic and aspartic acid neurotransmitter systems in zebrafish (Danio rerio) embryos/larvae
|
01.06.2021 |
Markin P.A.
Brito A.
Moskaleva N.E.
Tagliaro F.
Tarasov V.V.
La Frano M.R.
Savitskii M.V.
Appolonova S.A.
|
Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics |
10.1016/j.cbd.2021.100816 |
0 |
Ссылка
© 2021 Elsevier Inc. Introduction: Diazepam is a well-known psychoactive drug widely used worldwide for the treatment of anxiety, seizures, alcohol withdrawal syndrome, muscle spasms, sleeplessness, agitation, and pre/post-operative sedation. It is part of the benzodiazepine family, substances known to primarily act by binding and enhancing gamma-aminobutyric acid (GABAA) receptors. The objective of the present work was to investigate the influence of short and medium-term diazepam exposures on neurotransmitters measured through targeted metabolomics using a zebrafish embryo model. Methods: Short-term (2.5 h) and medium-term (96 h) exposures to diazepam were performed at drug concentrations of 0.8, 1.6, 16, and 160 μg/L. Intervention groups were compared with a vehicle control group. Each group consisted of 20 zebrafish eggs/larvae. Metabolites related with neurotransmission were determined by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Results: Thirty-six compounds were quantified. Significantly increased tryptophan and serotonin concentrations were found in the intervention groups receiving higher doses of diazepam in 2.5 h exposure (p < 0.05 control versus intervention groups). Tyrosine concentrations were higher (p < 0.05) at higher concentrations in 2.5 h exposure, but lower (p < 0.05) at higher concentrations in 96 h exposure. Both phenylalanine and aspartic acid concentrations were higher (p < 0.05) at higher doses in 2.5 h and 96 h exposure. Conclusions: Short- and medium-term exposures to diazepam induce dose- and time-dependent metabolomic alterations associated with the serotonergic, dopaminergic/adrenergic, and aspartic acid neurotransmitter systems in zebrafish.
Читать
тезис
|
Short- and long-term exposures of the synthetic cannabinoid 5F-APINAC induce metabolomic alterations associated with neurotransmitter systems and embryotoxicity confirmed by teratogenicity in zebrafish
|
01.05.2021 |
Markin P.A.
Brito A.
Moskaleva N.E.
Tagliaro F.
La Frano M.R.
Savitskii M.V.
Appolonova S.A.
|
Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology |
10.1016/j.cbpc.2021.109000 |
0 |
Ссылка
© 2021 Introduction: Synthetic cannabinoids are abused substances with strong psychoactive effects. Little is known about the effects on neurotransmission and the toxicity of the second-generation cannabinoid 5F-APINAC. The objective was to assess the influence of short- and long-term exposures of 5F-APINAC on metabolites associated with neurotransmission on zebrafish. Methods: Short-term (“acute”, 4 h) and long-term (“chronic”, 96 h) exposures to 5F-APINAC were performed at 0.001, 0.01, 0.1, 1.0 and 10 μM. Intervention groups were compared with a vehicle control. Each group n = 20 zebrafish eggs/larvae. Metabolites related to neurotransmission were determined. Results: In chronic exposure, larvae exposed to 10 μM 5F-APINAC presented morphological and developmental alterations. GABA had the lowest concentrations at higher exposure in acute (p < 0.01) and chronic (p < 0.001) experiments. Glutamine showed a descending trend in the acute experiment, but an ascending trend in the chronic exposure (p < 0.05). In chronic exposure, tryptophan presented an overall descending trend, but with a neat increase at 10 μM 5F-APINAC (p < 0.001). Tryptamine in acute exposure presented lower (p < 0.05) concentrations at higher doses. Dopamine and acetylcholine presented highest (p < 0.05) concentrations in the acute and chronic exposures, but with a drop at the highest doses in the chronic experiments. In chronic exposure, xanthurenic acid decreased, except for the highest dose. Picolinic acid was increased at the highest doses in the chronic experiment (p < 0.001). Conclusions: Short- and long-term exposures induced metabolomic alterations associated with the gamma-aminobutyric acid/glutamic acid, dopaminergic/adrenergic, cholinergic neurotransmitter systems, and the kynurenine pathway. Chronic exposure at 10 μM 5F-APINAC was associated with embryotoxicity confirmed by teratogenesis.
Читать
тезис
|
Relationship between the plasma acylcarnitine profile and cardiometabolic risk factors in adults diagnosed with cardiovascular diseases
|
01.08.2020 |
Kukharenko A.
Brito A.
Kozhevnikova M.V.
Moskaleva N.
Markin P.A.
Bochkareva N.
Korobkova E.O.
Belenkov Y.N.
Privalova E.V.
Larcova E.V.
Ariani A.
La Frano M.R.
Appolonova S.A.
|
Clinica Chimica Acta |
10.1016/j.cca.2020.04.035 |
0 |
Ссылка
© 2020 Elsevier B.V. The development of cardiovascular diseases (CVDs) is often asymptomatic. Identification of initial indicators of cardiometabolic disruption may assist in its early detection. The objective was to determine the relationships between plasma acylcarnitines (ACs) and cardiometabolic risk factors in adults with and without CVDs. The AC profile in human plasma of healthy controls [non-CVD group, n = 13)] and individuals diagnosed with CVDs (CVD group, n = 34) were compared. A targeted analysis of 29 ACs was performed using flow injection analysis-tandem mass spectrometry. There were significant direct correlations (p < 0.05) between ACs and cardiometabolic risk factors. Comparing the groups after adjustment for covariates, showed that the ACs that were best differentiated (p < 0.05) between the two groups and that presented “good” diagnostic accuracy were carnitine [30.7 (25.5–37.7) vs. 37.7 (32.3–45.0) µM], the short-chain ACs: acetylcarnitine [8.9 (7.4–10.2) vs. 11.9 (9.2–14.4) µM] and isovalerylcarnitine [0.10 (0.06–0.13) vs. 0.13 (0.10–0.16) µM], and the medium-chain ACs: hexanoylcarnitine [0.04 (0.03–0.05) vs. 0.06 (0.05–0.07) µM] and decenoylcarnitine [0.18 (0.12–0.22) vs. 0.22 (0.17–0.32) µM]. This assessment contributes to the identification of the unique metabolic features exhibited in association with cardiometabolic risk in adults diagnosed with CVD. The altered metabolites have the potential to be used as biomarkers for early detection of CVD.
Читать
тезис
|
Worldwide variation in human milk metabolome: Indicators of breast physiology and maternal lifestyle?
|
01.09.2018 |
Gay M.
Koleva P.
Slupsky C.
du Toit E.
Eggesbo M.
Johnson C.
Wegienka G.
Shimojo N.
Campbell D.
Prescott S.
Munblit D.
Geddes D.
Kozyrskyj A.
Dahl C.
Haynes A.
Hsu P.
Mackay C.
Penders J.
Renz H.
Thijs C.
West C.
|
Nutrients |
|
6 |
Ссылка
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. Human milk provides essential substrates for the optimal growth and development of a breastfed infant. Besides providing nutrients to the infant, human milk also contains metabolites which form an intricate system between maternal lifestyle, such as the mother’s diet and the gut microbiome, and infant outcomes. This study investigates the variation of these human milk metabolites from five different countries. Human milk samples (n = 109) were collected one month postpartum from Australia, Japan, the USA, Norway, and South Africa and were analyzed by nuclear magnetic resonance. The partial least squares discriminant analysis (PLS-DA) showed separation between either maternal countries of origin or ethnicities. Variation between countries in concentration of metabolites, such as 2-oxoglutarate, creatine, and glutamine, in human milk, between countries, could provide insights into problems, such as mastitis and/or impaired functions of the mammary glands. Several important markers of milk production, such as lactose, betaine, creatine, glutamate, and glutamine, showed good correlation between each metabolite. This work highlights the importance of milk metabolites with respect to maternal lifestyle and the environment, and also provides the framework for future breastfeeding and microbiome studies in a global context.
Читать
тезис
|
Menopausal osteoporosis and vitamin D
|
01.01.2018 |
Kuznetsova I.
|
Akusherstvo i Ginekologiya (Russian Federation) |
|
0 |
Ссылка
© Bionika Media Ltd. The author has carried out a systems analysis of the data available in the current literature on the participation of vitamin D in the physiology of bone metabolism, the pathogenesis of osteoporosis, and the possibilities of osteoporosis therapy with active vitamin D metabolites. The paper describes the mechanisms of vitamin D participation in the processes of bone metabolism and calcium homeostasis. It presents the effects of vitamin D on connective and muscle tissues. Its deficiency is shown to play a role in the pathogenesis of osteoporosis and in the increased risk of low-trauma fractures. There are clinical trial findings that confirm the possibility of using active vitamin D metabolites for the therapy of osteoporosis and for the prevention of low-trauma fractures. Active vitamin D metabolites used alone or in combination with antiresorptive therapy for osteoporosis is an effective measure to prevent low-trauma fractures and can be prescribed for menopausal osteoporosis.
Читать
тезис
|