CNS genomic profiling in the mouse chronic social stress model implicates a novel category of candidate genes integrating affective pathogenesis
|
08.03.2021 |
Demin K.A.
Smagin D.A.
Kovalenko I.L.
Strekalova T.
Galstyan D.S.
Kolesnikova T.O.
De Abreu M.S.
Galyamina A.G.
Bashirzade A.
Kalueff A.V.
|
Progress in Neuro-Psychopharmacology and Biological Psychiatry |
10.1016/j.pnpbp.2020.110086 |
0 |
Ссылка
© 2020 Elsevier Inc. Despite high prevalence, medical impact and societal burden, anxiety, depression and other affective disorders remain poorly understood and treated. Clinical complexity and polygenic nature complicate their analyses, often revealing genetic overlap and cross-disorder heritability. However, the interplay or overlaps between disordered phenotypes can also be based on shared molecular pathways and ‘crosstalk’ mechanisms, which themselves may be genetically determined. We have earlier predicted (Kalueff et al., 2014) a new class of ‘interlinking’ brain genes that do not affect the disordered phenotypes per se, but can instead specifically determine their interrelatedness. To test this hypothesis experimentally, here we applied a well-established rodent chronic social defeat stress model, known to progress in C57BL/6J mice from the Anxiety-like stage on Day 10 to Depression-like stage on Day 20. The present study analyzed mouse whole-genome expression in the prefrontal cortex and hippocampus during the Day 10, the Transitional (Day 15) and Day 20 stages in this model. Our main question here was whether a putative the Transitional stage (Day 15) would reveal distinct characteristic genomic responses from Days 10 and 20 of the model, thus reflecting unique molecular events underlining the transformation or switch from anxiety to depression pathogenesis. Overall, while in the Day 10 (Anxiety) group both brain regions showed major genomic alterations in various neurotransmitter signaling pathways, the Day 15 (Transitional) group revealed uniquely downregulated astrocyte-related genes, and the Day 20 (Depression) group demonstrated multiple downregulated genes of cell adhesion, inflammation and ion transport pathways. Together, these results reveal a complex temporal dynamics of mouse affective phenotypes as they develop. Our genomic profiling findings provide first experimental support to the idea that novel brain genes (activated here only during the Transitional stage) may uniquely integrate anxiety and depression pathogenesis and, hence, determine the progression from one pathological state to another. This concept can potentially be extended to other brain conditions as well. This preclinical study also further implicates cilial and astrocytal mechanisms in the pathogenesis of affective disorders.
Читать
тезис
|
Population-Based Analysis of Cluster Headache-Associated Genetic Polymorphisms
|
01.07.2018 |
Katsarou M.
Papasavva M.
Latsi R.
Toliza I.
Gkaros A.
Papakonstantinou S.
Gatzonis S.
Mitsikostas D.
Kovatsi L.
Isotov B.
Tsatsakis A.
Drakoulis N.
|
Journal of Molecular Neuroscience |
|
2 |
Ссылка
© 2018, Springer Science+Business Media, LLC, part of Springer Nature. Cluster headache is a disorder with increased hereditary risk. Associations between cluster headache and polymorphism rs2653349 of the HCRTR2 gene have been demonstrated. The less common allele (A) seems to reduce disease susceptibility. The polymorphism rs5443 of the GNB3 gene positively influences triptan treatment response. Carriers of the mutated T allele are more likely to respond positively compared to C:C homozygotes, when treated with triptans. DNA was extracted from buccal swabs obtained from 636 non-related Southeastern European Caucasian individuals and was analyzed by real-time PCR. Gene distribution for the rs2653349 was G:G = 79.1%, G:A = 19.2%, and A:A = 1.7%. The frequency of the wild-type G allele was 88.7%. The frequencies for rs5443 were C:C = 44.0%, C:T = 42.6%, and T:T = 13.4%. The frequency of the wild-type C allele was 65.3%. The frequency distribution of rs2653349 in the Southeastern European Caucasian population differs significantly when compared with other European and East Asian populations, and the frequency distribution of rs5443 showed a statistically significant difference between Southeastern European Caucasian and African, South Asian, and East Asian populations. For rs2653349, a marginal statistically significant difference between genders was found (p = 0.080) for A:A versus G:G and G:A genotypes (OR = 2.78), indicating a higher representation of male homozygotes for the protective mutant A:A allele than female. No statistically significant difference was observed between genders for rs5443. Cluster headache pathophysiology and pharmacotherapy response may be affected by genetic factors, indicating the significant role of genotyping in the overall treatment effectiveness of cluster headaches.
Читать
тезис
|