Perinatal and early-life cobalt exposure impairs essential metal metabolism in immature ICR mice
|
01.03.2021 |
Skalny A.V.
Gluhcheva Y.
Ajsuvakova O.P.
Pavlova E.
Petrova E.
Rashev P.
Vladov I.
Shakieva R.A.
Aschner M.
Tinkov A.A.
|
Food and Chemical Toxicology |
10.1016/j.fct.2021.111973 |
0 |
Ссылка
© 2021 Elsevier Ltd The objective of the present study was to assess the impact of cobalt (Co) exposure on tissue distribution of iron (Fe), copper (Cu), manganese (Mn), and zinc (Zn), as well as serum hepcidin levels in immature mice (18, 25, 30 days). Pregnant mice were exposed to 75 mg/kg b.w. cobalt chloride (CoCl2 × 6H2O) with drinking water starting from 3 days before delivery and during lactation. At weaning (day 25) the offspring were separated and housed in individual cages with subsequent exposure to 75 mg/kg b.w. CoCl2 until 30 days postnatally. Evaluation of tissue metal levels was performed by an inductively coupled plasma-mass spectrometry (ICP-MS). Serum hepcidin level was assayed by enzyme linked immunosorbent assay (ELISA). Cobalt exposure resulted in a time- and tissue-dependent increase in Co levels in kidney, spleen, liver, muscle, erythrocytes, and serum on days 18, 25, and 30. In parallel with increasing Co levels, CoCl2 exposure resulted in a significant accumulation of Cu, Fe, Mn, and Zn in the studied tissues, with the effect being most pronounced in 25-day-old mice. Cobalt exposure significantly increased serum hepcidin levels only in day18 mice. The obtained data demonstrate that Co exposure may alter essential metal metabolism in vivo.
Читать
тезис
|
Influence of oblique angle deposition on Cu-substituted hydroxyapatite nano-roughness and morphology
|
25.07.2020 |
Prosolov K.A.
Khimich M.A.
Rau J.V.
Lychagin D.V.
Sharkeev Y.P.
|
Surface and Coatings Technology |
10.1016/j.surfcoat.2020.125883 |
0 |
Ссылка
© 2020 Elsevier B.V. In this work, we study the effect of RF magnetron oblique angle deposition (OAD) on morphology, structure, and elemental composition of as-deposited and heat-treated Cu containing calcium phosphates. The control over the surface morphology and nano roughness provided by OAD is of great interest as both Mesenchymal Stem Cells and various types of bacteria respond strongly to nanoscale topography. A Cu substituted hydroxyapatite target was used to deposit coatings on the surface of titanium (Ti) and silicon (Si) substrates. The samples were placed at an oblique angle of 80° relative to the surface of the sample holder and in a normal configuration with respect to the flux direction and, therefore, parallel to the target. The dense homogeneous coatings with globular surface features deposited at normal flux incidence (NFI) configuration changed to elliptical, highly oriented structures with the direction dictated by the atomic shadowing effect when the substrate was deposited at an oblique angle. As-deposited thin films were subjected to post-deposition-heat-treatment at 700 °C in an Ar atmosphere. This led to a drastic change in the surface morphology and, namely, lost the directionality of the nanostructures. According to the X-ray diffraction data, the samples deposited obliquely showed preferential growth in the (002) plane and lower internal stress, than samples coated at NFI for both the Si and Ti substrates. The RMS roughness of the films deposited obliquely on Si was twice that of the films deposited at NFI (860 ± 80 pm and 408 ± 60 pm, respectively). However, it was not the case for the Ti substrate, the RMS roughness decreased from 42 ± 4 nm for coatings deposited at normal flux geometry to 33 ± 2 nm for coatings deposited obliquely. The heat-treatment of the samples deposited at 80° resulted in a significant increase in the surface roughness: 8 ± 0.7 nm for Si and 71 ± 4 nm for Ti substrates. The obtained results demonstrate that the oblique angle deposition can be used to fabricate nano-rough surface morphologies.
Читать
тезис
|
Influence of oblique angle deposition on Cu-substituted hydroxyapatite nano-roughness and morphology
|
25.07.2020 |
Prosolov K.A.
Khimich M.A.
Rau J.V.
Lychagin D.V.
Sharkeev Y.P.
|
Surface and Coatings Technology |
10.1016/j.surfcoat.2020.125883 |
0 |
Ссылка
© 2020 Elsevier B.V. In this work, we study the effect of RF magnetron oblique angle deposition (OAD) on morphology, structure, and elemental composition of as-deposited and heat-treated Cu containing calcium phosphates. The control over the surface morphology and nano roughness provided by OAD is of great interest as both Mesenchymal Stem Cells and various types of bacteria respond strongly to nanoscale topography. A Cu substituted hydroxyapatite target was used to deposit coatings on the surface of titanium (Ti) and silicon (Si) substrates. The samples were placed at an oblique angle of 80° relative to the surface of the sample holder and in a normal configuration with respect to the flux direction and, therefore, parallel to the target. The dense homogeneous coatings with globular surface features deposited at normal flux incidence (NFI) configuration changed to elliptical, highly oriented structures with the direction dictated by the atomic shadowing effect when the substrate was deposited at an oblique angle. As-deposited thin films were subjected to post-deposition-heat-treatment at 700 °C in an Ar atmosphere. This led to a drastic change in the surface morphology and, namely, lost the directionality of the nanostructures. According to the X-ray diffraction data, the samples deposited obliquely showed preferential growth in the (002) plane and lower internal stress, than samples coated at NFI for both the Si and Ti substrates. The RMS roughness of the films deposited obliquely on Si was twice that of the films deposited at NFI (860 ± 80 pm and 408 ± 60 pm, respectively). However, it was not the case for the Ti substrate, the RMS roughness decreased from 42 ± 4 nm for coatings deposited at normal flux geometry to 33 ± 2 nm for coatings deposited obliquely. The heat-treatment of the samples deposited at 80° resulted in a significant increase in the surface roughness: 8 ± 0.7 nm for Si and 71 ± 4 nm for Ti substrates. The obtained results demonstrate that the oblique angle deposition can be used to fabricate nano-rough surface morphologies.
Читать
тезис
|
Serum zinc, copper, zinc-to-copper ratio, and other essential elements and minerals in children with attention deficit/hyperactivity disorder (ADHD)
|
01.03.2020 |
Skalny A.
Mazaletskaya A.
Ajsuvakova O.
Bjørklund G.
Skalnaya M.
Chao J.
Chernova L.
Shakieva R.
Kopylov P.
Skalny A.
Tinkov A.
|
Journal of Trace Elements in Medicine and Biology |
10.1016/j.jtemb.2019.126445 |
0 |
Ссылка
© 2019 Elsevier GmbH Background: Essential trace elements and minerals play a significant role in neurodevelopment. Although certain studies demonstrated impaired essential trace element and mineral status in children with ADHD, the existing data are insufficient. The objective of the present study was to assess serum trace element and mineral levels in children with ADHD. Methods: Serum trace element and mineral levels in 68 children with ADHD and 68 neurotypical controls were assessed using ICP-MS at NexION 300D (PerkinElmer Inc., USA) equipped with ESI SC-2 DX4 autosampler (Elemental Scientific Inc., USA). Results: Serum Cr, Mg, and Zn levels in children with ADHD were 21 % (p = 0.010), 4 % (p = 0.005), and 7 % (p = 0. 001) lower as compared to the healthy controls, respectively. In turn, serum Cu/Zn values were 11 % higher than those in the control group. Age and gender had a significant impact on serum element levels in ADHD. Particularly, preschool children were characterized by significantly increased Cu (+8 %; p = 0.034), and Cu/Zn (+19 %; p < 0.001) values, whereas serum Zn (-9 %; p = 0.004) level was decreased. In primary school-aged children only 6 % (p = 0.007) lower Mg levels were observed. Both boys and girls with ADHD were characterized by 8 % (p = 0.016) lower serum Zn levels and 10 % (p = 0.049) higher Cu/Zn values when compared to neurotypical girls. Boys with ADHD also had significantly higher Cu/Zn, exceeding the respective control values by 12 % (p = 0.021), predominantly due to a 7 % (p = 0.035) decrease in serum Zn. Serum Mg levels were also found to be significantly lower than those in neurotypical children by 5 % (p = 0.007). In adjusted regression models serum Cr (β=-0.234; p = 0.009) and Cu/Zn (β = 0.245; p = 0.029) values were significantly associated with ADHD, respectively. Two-way ANOVA revealed a significant impact of ADHD on Cr, Mg, Zn, and Cu/Zn, whereas age was associated with Cu, I, Mg, Mo, and Cu/Zn, whereas gender accounted only for variability in serum Mn levels. Principal component analysis (PCA) also revealed significant contributions of Mg, Zn, and Cu/Zn values to ADHD variability. Conclusions: Hypothetically, the observed decrease of essential trace elements, namely Mg and Zn, and elevation of Cu/Zn may significantly contribute to the risk of ADHD or its severity and/or comorbidity.
Читать
тезис
|
Serum zinc, copper, zinc-to-copper ratio, and other essential elements and minerals in children with attention deficit/hyperactivity disorder (ADHD)
|
01.03.2020 |
Skalny A.
Mazaletskaya A.
Ajsuvakova O.
Bjørklund G.
Skalnaya M.
Chao J.
Chernova L.
Shakieva R.
Kopylov P.
Skalny A.
Tinkov A.
|
Journal of Trace Elements in Medicine and Biology |
10.1016/j.jtemb.2019.126445 |
0 |
Ссылка
© 2019 Elsevier GmbH Background: Essential trace elements and minerals play a significant role in neurodevelopment. Although certain studies demonstrated impaired essential trace element and mineral status in children with ADHD, the existing data are insufficient. The objective of the present study was to assess serum trace element and mineral levels in children with ADHD. Methods: Serum trace element and mineral levels in 68 children with ADHD and 68 neurotypical controls were assessed using ICP-MS at NexION 300D (PerkinElmer Inc., USA) equipped with ESI SC-2 DX4 autosampler (Elemental Scientific Inc., USA). Results: Serum Cr, Mg, and Zn levels in children with ADHD were 21 % (p = 0.010), 4 % (p = 0.005), and 7 % (p = 0. 001) lower as compared to the healthy controls, respectively. In turn, serum Cu/Zn values were 11 % higher than those in the control group. Age and gender had a significant impact on serum element levels in ADHD. Particularly, preschool children were characterized by significantly increased Cu (+8 %; p = 0.034), and Cu/Zn (+19 %; p < 0.001) values, whereas serum Zn (-9 %; p = 0.004) level was decreased. In primary school-aged children only 6 % (p = 0.007) lower Mg levels were observed. Both boys and girls with ADHD were characterized by 8 % (p = 0.016) lower serum Zn levels and 10 % (p = 0.049) higher Cu/Zn values when compared to neurotypical girls. Boys with ADHD also had significantly higher Cu/Zn, exceeding the respective control values by 12 % (p = 0.021), predominantly due to a 7 % (p = 0.035) decrease in serum Zn. Serum Mg levels were also found to be significantly lower than those in neurotypical children by 5 % (p = 0.007). In adjusted regression models serum Cr (β=-0.234; p = 0.009) and Cu/Zn (β = 0.245; p = 0.029) values were significantly associated with ADHD, respectively. Two-way ANOVA revealed a significant impact of ADHD on Cr, Mg, Zn, and Cu/Zn, whereas age was associated with Cu, I, Mg, Mo, and Cu/Zn, whereas gender accounted only for variability in serum Mn levels. Principal component analysis (PCA) also revealed significant contributions of Mg, Zn, and Cu/Zn values to ADHD variability. Conclusions: Hypothetically, the observed decrease of essential trace elements, namely Mg and Zn, and elevation of Cu/Zn may significantly contribute to the risk of ADHD or its severity and/or comorbidity.
Читать
тезис
|
Serum zinc, copper, zinc-to-copper ratio, and other essential elements and minerals in children with attention deficit/hyperactivity disorder (ADHD)
|
01.03.2020 |
Skalny A.
Mazaletskaya A.
Ajsuvakova O.
Bjørklund G.
Skalnaya M.
Chao J.
Chernova L.
Shakieva R.
Kopylov P.
Skalny A.
Tinkov A.
|
Journal of Trace Elements in Medicine and Biology |
10.1016/j.jtemb.2019.126445 |
0 |
Ссылка
© 2019 Elsevier GmbH Background: Essential trace elements and minerals play a significant role in neurodevelopment. Although certain studies demonstrated impaired essential trace element and mineral status in children with ADHD, the existing data are insufficient. The objective of the present study was to assess serum trace element and mineral levels in children with ADHD. Methods: Serum trace element and mineral levels in 68 children with ADHD and 68 neurotypical controls were assessed using ICP-MS at NexION 300D (PerkinElmer Inc., USA) equipped with ESI SC-2 DX4 autosampler (Elemental Scientific Inc., USA). Results: Serum Cr, Mg, and Zn levels in children with ADHD were 21 % (p = 0.010), 4 % (p = 0.005), and 7 % (p = 0. 001) lower as compared to the healthy controls, respectively. In turn, serum Cu/Zn values were 11 % higher than those in the control group. Age and gender had a significant impact on serum element levels in ADHD. Particularly, preschool children were characterized by significantly increased Cu (+8 %; p = 0.034), and Cu/Zn (+19 %; p < 0.001) values, whereas serum Zn (-9 %; p = 0.004) level was decreased. In primary school-aged children only 6 % (p = 0.007) lower Mg levels were observed. Both boys and girls with ADHD were characterized by 8 % (p = 0.016) lower serum Zn levels and 10 % (p = 0.049) higher Cu/Zn values when compared to neurotypical girls. Boys with ADHD also had significantly higher Cu/Zn, exceeding the respective control values by 12 % (p = 0.021), predominantly due to a 7 % (p = 0.035) decrease in serum Zn. Serum Mg levels were also found to be significantly lower than those in neurotypical children by 5 % (p = 0.007). In adjusted regression models serum Cr (β=-0.234; p = 0.009) and Cu/Zn (β = 0.245; p = 0.029) values were significantly associated with ADHD, respectively. Two-way ANOVA revealed a significant impact of ADHD on Cr, Mg, Zn, and Cu/Zn, whereas age was associated with Cu, I, Mg, Mo, and Cu/Zn, whereas gender accounted only for variability in serum Mn levels. Principal component analysis (PCA) also revealed significant contributions of Mg, Zn, and Cu/Zn values to ADHD variability. Conclusions: Hypothetically, the observed decrease of essential trace elements, namely Mg and Zn, and elevation of Cu/Zn may significantly contribute to the risk of ADHD or its severity and/or comorbidity.
Читать
тезис
|
Serum zinc, copper, zinc-to-copper ratio, and other essential elements and minerals in children with attention deficit/hyperactivity disorder (ADHD)
|
01.03.2020 |
Skalny A.
Mazaletskaya A.
Ajsuvakova O.
Bjørklund G.
Skalnaya M.
Chao J.
Chernova L.
Shakieva R.
Kopylov P.
Skalny A.
Tinkov A.
|
Journal of Trace Elements in Medicine and Biology |
10.1016/j.jtemb.2019.126445 |
0 |
Ссылка
© 2019 Elsevier GmbH Background: Essential trace elements and minerals play a significant role in neurodevelopment. Although certain studies demonstrated impaired essential trace element and mineral status in children with ADHD, the existing data are insufficient. The objective of the present study was to assess serum trace element and mineral levels in children with ADHD. Methods: Serum trace element and mineral levels in 68 children with ADHD and 68 neurotypical controls were assessed using ICP-MS at NexION 300D (PerkinElmer Inc., USA) equipped with ESI SC-2 DX4 autosampler (Elemental Scientific Inc., USA). Results: Serum Cr, Mg, and Zn levels in children with ADHD were 21 % (p = 0.010), 4 % (p = 0.005), and 7 % (p = 0. 001) lower as compared to the healthy controls, respectively. In turn, serum Cu/Zn values were 11 % higher than those in the control group. Age and gender had a significant impact on serum element levels in ADHD. Particularly, preschool children were characterized by significantly increased Cu (+8 %; p = 0.034), and Cu/Zn (+19 %; p < 0.001) values, whereas serum Zn (-9 %; p = 0.004) level was decreased. In primary school-aged children only 6 % (p = 0.007) lower Mg levels were observed. Both boys and girls with ADHD were characterized by 8 % (p = 0.016) lower serum Zn levels and 10 % (p = 0.049) higher Cu/Zn values when compared to neurotypical girls. Boys with ADHD also had significantly higher Cu/Zn, exceeding the respective control values by 12 % (p = 0.021), predominantly due to a 7 % (p = 0.035) decrease in serum Zn. Serum Mg levels were also found to be significantly lower than those in neurotypical children by 5 % (p = 0.007). In adjusted regression models serum Cr (β=-0.234; p = 0.009) and Cu/Zn (β = 0.245; p = 0.029) values were significantly associated with ADHD, respectively. Two-way ANOVA revealed a significant impact of ADHD on Cr, Mg, Zn, and Cu/Zn, whereas age was associated with Cu, I, Mg, Mo, and Cu/Zn, whereas gender accounted only for variability in serum Mn levels. Principal component analysis (PCA) also revealed significant contributions of Mg, Zn, and Cu/Zn values to ADHD variability. Conclusions: Hypothetically, the observed decrease of essential trace elements, namely Mg and Zn, and elevation of Cu/Zn may significantly contribute to the risk of ADHD or its severity and/or comorbidity.
Читать
тезис
|
Serum zinc, copper, zinc-to-copper ratio, and other essential elements and minerals in children with attention deficit/hyperactivity disorder (ADHD)
|
01.03.2020 |
Skalny A.
Mazaletskaya A.
Ajsuvakova O.
Bjørklund G.
Skalnaya M.
Chao J.
Chernova L.
Shakieva R.
Kopylov P.
Skalny A.
Tinkov A.
|
Journal of Trace Elements in Medicine and Biology |
10.1016/j.jtemb.2019.126445 |
0 |
Ссылка
© 2019 Elsevier GmbH Background: Essential trace elements and minerals play a significant role in neurodevelopment. Although certain studies demonstrated impaired essential trace element and mineral status in children with ADHD, the existing data are insufficient. The objective of the present study was to assess serum trace element and mineral levels in children with ADHD. Methods: Serum trace element and mineral levels in 68 children with ADHD and 68 neurotypical controls were assessed using ICP-MS at NexION 300D (PerkinElmer Inc., USA) equipped with ESI SC-2 DX4 autosampler (Elemental Scientific Inc., USA). Results: Serum Cr, Mg, and Zn levels in children with ADHD were 21 % (p = 0.010), 4 % (p = 0.005), and 7 % (p = 0. 001) lower as compared to the healthy controls, respectively. In turn, serum Cu/Zn values were 11 % higher than those in the control group. Age and gender had a significant impact on serum element levels in ADHD. Particularly, preschool children were characterized by significantly increased Cu (+8 %; p = 0.034), and Cu/Zn (+19 %; p < 0.001) values, whereas serum Zn (-9 %; p = 0.004) level was decreased. In primary school-aged children only 6 % (p = 0.007) lower Mg levels were observed. Both boys and girls with ADHD were characterized by 8 % (p = 0.016) lower serum Zn levels and 10 % (p = 0.049) higher Cu/Zn values when compared to neurotypical girls. Boys with ADHD also had significantly higher Cu/Zn, exceeding the respective control values by 12 % (p = 0.021), predominantly due to a 7 % (p = 0.035) decrease in serum Zn. Serum Mg levels were also found to be significantly lower than those in neurotypical children by 5 % (p = 0.007). In adjusted regression models serum Cr (β=-0.234; p = 0.009) and Cu/Zn (β = 0.245; p = 0.029) values were significantly associated with ADHD, respectively. Two-way ANOVA revealed a significant impact of ADHD on Cr, Mg, Zn, and Cu/Zn, whereas age was associated with Cu, I, Mg, Mo, and Cu/Zn, whereas gender accounted only for variability in serum Mn levels. Principal component analysis (PCA) also revealed significant contributions of Mg, Zn, and Cu/Zn values to ADHD variability. Conclusions: Hypothetically, the observed decrease of essential trace elements, namely Mg and Zn, and elevation of Cu/Zn may significantly contribute to the risk of ADHD or its severity and/or comorbidity.
Читать
тезис
|
Serum zinc, copper, zinc-to-copper ratio, and other essential elements and minerals in children with attention deficit/hyperactivity disorder (ADHD)
|
01.03.2020 |
Skalny A.
Mazaletskaya A.
Ajsuvakova O.
Bjørklund G.
Skalnaya M.
Chao J.
Chernova L.
Shakieva R.
Kopylov P.
Skalny A.
Tinkov A.
|
Journal of Trace Elements in Medicine and Biology |
10.1016/j.jtemb.2019.126445 |
0 |
Ссылка
© 2019 Elsevier GmbH Background: Essential trace elements and minerals play a significant role in neurodevelopment. Although certain studies demonstrated impaired essential trace element and mineral status in children with ADHD, the existing data are insufficient. The objective of the present study was to assess serum trace element and mineral levels in children with ADHD. Methods: Serum trace element and mineral levels in 68 children with ADHD and 68 neurotypical controls were assessed using ICP-MS at NexION 300D (PerkinElmer Inc., USA) equipped with ESI SC-2 DX4 autosampler (Elemental Scientific Inc., USA). Results: Serum Cr, Mg, and Zn levels in children with ADHD were 21 % (p = 0.010), 4 % (p = 0.005), and 7 % (p = 0. 001) lower as compared to the healthy controls, respectively. In turn, serum Cu/Zn values were 11 % higher than those in the control group. Age and gender had a significant impact on serum element levels in ADHD. Particularly, preschool children were characterized by significantly increased Cu (+8 %; p = 0.034), and Cu/Zn (+19 %; p < 0.001) values, whereas serum Zn (-9 %; p = 0.004) level was decreased. In primary school-aged children only 6 % (p = 0.007) lower Mg levels were observed. Both boys and girls with ADHD were characterized by 8 % (p = 0.016) lower serum Zn levels and 10 % (p = 0.049) higher Cu/Zn values when compared to neurotypical girls. Boys with ADHD also had significantly higher Cu/Zn, exceeding the respective control values by 12 % (p = 0.021), predominantly due to a 7 % (p = 0.035) decrease in serum Zn. Serum Mg levels were also found to be significantly lower than those in neurotypical children by 5 % (p = 0.007). In adjusted regression models serum Cr (β=-0.234; p = 0.009) and Cu/Zn (β = 0.245; p = 0.029) values were significantly associated with ADHD, respectively. Two-way ANOVA revealed a significant impact of ADHD on Cr, Mg, Zn, and Cu/Zn, whereas age was associated with Cu, I, Mg, Mo, and Cu/Zn, whereas gender accounted only for variability in serum Mn levels. Principal component analysis (PCA) also revealed significant contributions of Mg, Zn, and Cu/Zn values to ADHD variability. Conclusions: Hypothetically, the observed decrease of essential trace elements, namely Mg and Zn, and elevation of Cu/Zn may significantly contribute to the risk of ADHD or its severity and/or comorbidity.
Читать
тезис
|
Serum zinc, copper, zinc-to-copper ratio, and other essential elements and minerals in children with attention deficit/hyperactivity disorder (ADHD)
|
01.03.2020 |
Skalny A.
Mazaletskaya A.
Ajsuvakova O.
Bjørklund G.
Skalnaya M.
Chao J.
Chernova L.
Shakieva R.
Kopylov P.
Skalny A.
Tinkov A.
|
Journal of Trace Elements in Medicine and Biology |
10.1016/j.jtemb.2019.126445 |
0 |
Ссылка
© 2019 Elsevier GmbH Background: Essential trace elements and minerals play a significant role in neurodevelopment. Although certain studies demonstrated impaired essential trace element and mineral status in children with ADHD, the existing data are insufficient. The objective of the present study was to assess serum trace element and mineral levels in children with ADHD. Methods: Serum trace element and mineral levels in 68 children with ADHD and 68 neurotypical controls were assessed using ICP-MS at NexION 300D (PerkinElmer Inc., USA) equipped with ESI SC-2 DX4 autosampler (Elemental Scientific Inc., USA). Results: Serum Cr, Mg, and Zn levels in children with ADHD were 21 % (p = 0.010), 4 % (p = 0.005), and 7 % (p = 0. 001) lower as compared to the healthy controls, respectively. In turn, serum Cu/Zn values were 11 % higher than those in the control group. Age and gender had a significant impact on serum element levels in ADHD. Particularly, preschool children were characterized by significantly increased Cu (+8 %; p = 0.034), and Cu/Zn (+19 %; p < 0.001) values, whereas serum Zn (-9 %; p = 0.004) level was decreased. In primary school-aged children only 6 % (p = 0.007) lower Mg levels were observed. Both boys and girls with ADHD were characterized by 8 % (p = 0.016) lower serum Zn levels and 10 % (p = 0.049) higher Cu/Zn values when compared to neurotypical girls. Boys with ADHD also had significantly higher Cu/Zn, exceeding the respective control values by 12 % (p = 0.021), predominantly due to a 7 % (p = 0.035) decrease in serum Zn. Serum Mg levels were also found to be significantly lower than those in neurotypical children by 5 % (p = 0.007). In adjusted regression models serum Cr (β=-0.234; p = 0.009) and Cu/Zn (β = 0.245; p = 0.029) values were significantly associated with ADHD, respectively. Two-way ANOVA revealed a significant impact of ADHD on Cr, Mg, Zn, and Cu/Zn, whereas age was associated with Cu, I, Mg, Mo, and Cu/Zn, whereas gender accounted only for variability in serum Mn levels. Principal component analysis (PCA) also revealed significant contributions of Mg, Zn, and Cu/Zn values to ADHD variability. Conclusions: Hypothetically, the observed decrease of essential trace elements, namely Mg and Zn, and elevation of Cu/Zn may significantly contribute to the risk of ADHD or its severity and/or comorbidity.
Читать
тезис
|
Serum levels of copper, iron, and manganese in women with pregnancy, miscarriage, and primary infertility
|
01.12.2019 |
Skalnaya M.
Tinkov A.
Lobanova Y.
Chang J.
Skalny A.
|
Journal of Trace Elements in Medicine and Biology |
10.1016/j.jtemb.2019.08.009 |
0 |
Ссылка
© 2019 Background: Iron (Fe), copper (Cu), and manganese (Mn) play a significant role in female reproduction and fetal development. At the same time, high levels of metals may exert toxic effects. Correspondingly, both excess and deficiency of essential trace elements were shown to be associated with female infertility and adverse pregnancy outcome, although the existing data are rather contradictory. Therefore, the objective of the present study was to reveal the potential role of altered iron, copper, and manganese status in female reproductive health problems through assessment of serum metal levels in healthy non-pregnant and pregnant women, as well as patients with miscarriage and primary infertility. Methods: A total of 150 healthy controls, 169 pregnant women (II trimester of pregnancy), 75 women with miscarriage, and 91 patients with primary infertility were enrolled. Serum metal levels were assessed using ICP-MS. Results: Pregnant women are characterized by a significant increase in serum Cu an Mn levels by 40% (p < 0.001) and 16% (p = 0.043) as compared to the controls, respectively. Serum Cu levels in women with miscarriage and infertility were 30% and 35% lower than those in pregnant women (p < 0.001). No significant difference in serum iron levels were observed between the control and pregnant women. Women who had miscarriage were characterized by 13% (p = 0.042) higher serum Fe levels as compared to the pregnant ones. Multiple regression analysis demonstrated that serum copper levels was significantly associated both with pregnancy (β = 0.436; p < 0.001) and reproductive health problems in women (β = −0.272; p < 0.001). The latter was improved significant after adjustment for serum Fe and Mn levels, age, and BMI (β = −0.431; p < 0.001). The model incorporating serum Cu, Fe, Mn, and anthropometric parameters accounted for 23% of variability in reproductive status (p < 0.001). Conclusions: It is proposed that the lack of pregnancy-associated increase in metal levels in miscarriage and infertility may be indicative of at least partial role of metal insufficiency in impaired pregnancy and reproductive function in general. However, detailed clinical studies as well as experimental investigations are required for assessment of the potential causes and mechanisms of the observed associations.
Читать
тезис
|
Kinetics of cobalt and copper oxides dissolution in Acidic media containing edta
|
01.01.2018 |
Eliseeva E.
Plakhotnaya O.
Gorichev I.
Atanasyan T.
Slynko L.
|
Herald of the Bauman Moscow State Technical University, Series Natural Sciences |
|
0 |
Ссылка
© 2018 BMSTU. We studied the dependence of the rate of dissolution of d-elements oxides (cobalt and copper oxides) in acidic media with EDTA additives from different factors. Increase in EDTA concentration enhances the cobalt and copper oxides dissolution, while the copper oxide dissolution is inhibited. Within the research we determined the orders by hydrogen ions and EDTA: For cobalt oxide it is 0.5 ± 0.1; for copper oxide it is nH=0,6, and by EDTA it is∼-0.6. The peculiarity of the studied kinetics in EDTA is that the rate of cobalt oxides dissolution passes through a maximum at pH =-1, for copper oxide in the presence of chelating agent EDTA the dissolution rate first decreases, and then it increases at pH from 5 to 8. The activation energy of the process is Ea (H2SO4) = = 70 kJ/mol, Ea (EDTA) = 60 kJ/mol, for copper oxide the activation energy is 73 ± 0.5 kJ/mol. The simulation of the processes showed that the surface particle, which determines the rate of dissolution is eOH+ in mineral acids, and in the chelating agent it is HY.
Читать
тезис
|