Год публикации:
Все года
2018
2019
2020
Название |
Дата публикации |
Коллектив авторов |
Журнал |
DOI |
Индекс цитирования |
Ссылка на источник |
Green approach for fabrication of bacterial cellulose-chitosan composites in the solutions of carbonic acid under high pressure CO<inf>2</inf>
|
15.04.2021 |
Novikov I.V.
Pigaleva M.A.
Naumkin A.V.
Badun G.A.
Levin E.E.
Kharitonova E.P.
Gromovykh T.I.
Gallyamov M.O.
|
Carbohydrate Polymers |
10.1016/j.carbpol.2021.117614 |
0 |
Ссылка
© 2021 Elsevier Ltd The functionalization of the bacterial cellulose (BC) surface with a chitosan biopolymer to expand the areas of possible applications of the modified BC is an important scientific task. The creation of such composites in the carbonic acid solutions that were performed in this work has several advantages in terms of being biocompatible and eco-friendly. Quantitative analysis of chitosan content in the composite was conducted by tritium-labeled chitosan radioactivity detection method and this showed three times increased chitosan loading. Different physicochemical methods showed successful incorporation of chitosan into the BC matrix and interaction with it through hydrogen bonds. Microscopy results showed that the chitosan coating with a thickness of around 10 nm was formed in the bulk of BC, covering each microfibril. It was found that the inner specific surface area increased 1.5 times on deposition of chitosan from the solutions in carbonic acid.
Читать
тезис
|
Laser fabrication of composite layers from biopolymers with branched 3D networks of single-walled carbon nanotubes for cardiovascular implants
|
15.03.2021 |
Gerasimenko A.Y.
Kurilova U.E.
Savelyev M.S.
Murashko D.T.
Glukhova O.E.
|
Composite Structures |
10.1016/j.compstruct.2020.113517 |
0 |
Ссылка
© 2020 Elsevier Ltd A laser technology has been developed for fabricating structures from composite layers based on biopolymers: albumin, collagen, and chitosan with single-walled carbon nanotubes (SWCNT). The structures are intended for cardiovascular devices and tissue-engineered implants. This is evidenced by the results of studies. The composite layers were fabricated due to the phase transition of biopolymers and SWCNT aqueous dispersion under the influence of laser pulses. At the same time branched 3D networks of SWCNT were formed in the biopolymer matrix. The threshold energy fluence of laser pulses was determined (0.032–0.083 J/cm2) at which a bimodal distribution of pores was observed. The calculation of contact resistances between nanotubes at percolation units of 3D networks (20–100 kOhm) was carried out. Composite layers fabricated by laser demonstrated conductivity values that were higher (12.4 S/m) than those for layers by thermostat (4.7 S/m). The maximum hardness of the composite layers with SWCNT (0.01 wt%) by laser was 482 ± 10, 425 ± 10, and 407 ± 15 MPa for albumin, collagen and chitosan, respectively. The hardness of the thermostat layers was less than 100 MPa. The viability of endothelial cells in composite layers was improved. The composite layers ensured a normal level of hemolysis during interaction with erythrocytes.
Читать
тезис
|