The distribution of conjunctival goblet cells in mice
|
01.03.2021 |
Welss J.
Punchago N.
Feldt J.
Paulsen F.
|
Annals of Anatomy |
10.1016/j.aanat.2020.151664 |
0 |
Ссылка
© 2020 Purpose: To evaluate the density and distribution of conjunctival goblet cells in mice without clinical evidence of ocular surface diseases. Methods: Immediately after euthanasia of C57BL/6 wild-type mice, the eyes including eyelids were removed and fixed in paraformaldehyde. Entire eyeballs and eyelids were cut in series along the sagittal axis from nasal to temporal on a microtome and then stained with Periodic Acid-Schiff acid to visualize the goblet cells. At each section stained in this way, the conjunctival goblet cells of the entire upper and lower lid conjunctiva were counted by light microscopy. Additional (transmission electron microscopy) (TEM)-Analysis on ultrathin sections was performed to evaluate morphological differences. Results: The total number of conjunctival goblet cells differs markedly between individual animals. Categorisation into upper eyelid (UL) and lower eyelid (LL) and into regions (nasal, middle, temporal) revealed a significant increase of goblet cells from nasal to temporal in the UL and a significant decrease in the LL. Conclusion: The distribution of conjunctival goblet cells in mice differs considerably from humans and between individual animals. Therefore, precise selection of sampling and methods are needed to obtain comparable data. We recommend to use the middle region of the conjunctiva of UL/LL for goblet cell studies in mice. These findings are of particular interest for dry eye mouse models as well as pharmacological studies on mice with influence on their goblet cells.
Читать
тезис
|
Recombinant tissue plasminogen activator treatment for COVID-19 associated ARDS and acute cor pulmonale
|
01.03.2021 |
Kosanovic D.
Yaroshetskiy A.I.
Tsareva N.A.
Merzhoeva Z.M.
Trushenko N.V.
Nekludova G.V.
Schermuly R.T.
Avdeev S.N.
|
International Journal of Infectious Diseases |
10.1016/j.ijid.2020.12.043 |
0 |
Ссылка
© 2020 The Author(s) Existing literature highlights the fact that patients with COVID-19 exhibit alterations in the coagulation process and are associated with respiratory and cardiovascular diseases, including acute respiratory distress syndrome and acute cor pulmonale. In this report, we describe the effects of systemic thrombolysis on acute cor pulmonale in a patient suffering from COVID-19. We demonstrated that systemic thrombolysis successfully improved the hemodynamics of our patient and resulted in a prominent reduction in hypercapnia, alveolar dead space, and ventilatory ratio.
Читать
тезис
|
Spectrally encoded microspheres for immunofluorescence analysis
|
20.02.2021 |
Sankova N.
Shalaev P.
Semeykina V.
Dolgushin S.
Odintsova E.
Parkhomchuk E.
|
Journal of Applied Polymer Science |
10.1002/app.49890 |
0 |
Ссылка
© 2020 Wiley Periodicals LLC A modern immunofluorescence analysis based on spectrally encoded microspheres has found numerous and constantly growing applications in disease diagnosis, environmental supervision, and fundamental science. Here we present an overview of microsphere-based methods of multiplex immunofluorescence analysis and consider such important parameters of beads, that are crucial in most microsphere-based immunoassays, as size distribution, fluorescence stability, magnetic properties, and particle material. The preparation methods of the microspheres with tunable diameter, the introduction of various types of fluorochromes, and magnetic particles into the microspheres are discussed in details. This review also addresses the advantages and disadvantages of different approaches to implement technically bead-based immunofluorescence analysis.
Читать
тезис
|
Laser-induced twisting of phosphorus functionalized thiazolotriazole as a way of cholinesterase activity change
|
05.02.2021 |
Pankin D.
Khokhlova A.
Kolesnikov I.
Vasileva A.
Pilip A.
Egorova A.
Erkhitueva E.
Zigel V.
Gureev M.
Manshina A.
|
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy |
10.1016/j.saa.2020.118979 |
0 |
Ссылка
© 2020 Elsevier B.V. Herein, the synthesis, design, and the physicochemical characterization of phosphorus functionalized thiazolotriazole (PFT) compound are presented. The PFT tests on the biological activity revealed butyrylcholinesterase inhibition that was confirmed and explained with molecular docking studies. The pronounced reduction of optical density and biological activity was found as a result of irradiation of the PFT water solution with laser beam at wavelength 266 nm. The observed phenomenon was explained on the base of molecular dynamics, docking, and density functional theory modeling by the formation of PFT conformers via laser-induced phosphonate group twisting. The reorganization of the PFT geometry was found to be a reason of butyrylcholinesterase inhibition mechanism change and the site-specificity loss. These results demonstrate that PFT combines photoswitching and bioactive properties in one molecule that makes it promising as a molecular basis for the further design of bioactive substances with photosensitive properties based on the mechanism of the phosphonate group phototwisting.
Читать
тезис
|
Novel octabromo-substituted lanthanide(III) phthalocyanines – Prospective compounds for nonlinear optics
|
01.02.2021 |
Kuzmina E.A.
Dubinina T.V.
Vasilevsky P.N.
Saveliev M.S.
Gerasimenko A.Y.
Borisova N.E.
Tomilova L.G.
|
Dyes and Pigments |
10.1016/j.dyepig.2020.108871 |
0 |
Ссылка
© 2020 Elsevier Ltd Novel octabromo-substituted lanthanide(III) phthalocyanines were obtained via template method starting from corresponding 4,5-dibromophthalonitrile and identified by high-resolution mass-spectrometry, 1H nuclear magnetic resonanse and infra red spectroscopy. To achieve an initial 4,5-dibromophthalonitrile the reaction conditions of Pd(0) catalyzed cyanation were optimized. The peripheral bromine atoms impact on the optical properties of phthalocyanine complexes. The bathochromic shift of the main absorption band (Q band) was observed going from unsubstituted to octachloro- and then to octabromo-substituted phthalocyanines. All complexes demonstrated nonlinear optical responses in the DMF solution. Increasing the intensity of laser radiation leads to a nonlinear decrease in transmittance and further restoration of optical properties when switching back to linear mode. Nonlinear optical responses depend on the central ion nature. Europium phthalocyanine showed the enhanced nonlinear absorption coefficient compared to lutetium and terbium complexes. This was caused by an enhanced population of excited state and faster excitement for complexes with large central ions. The impact of peripheral bromine groups into nonlinear optical properties was determined through the comparison with unsubstituted analogues.
Читать
тезис
|
Zn-doping of silicate and hydroxyapatite-based cements: Dentin mechanobiology and bioactivity
|
01.02.2021 |
Toledano M.
Osorio R.
Vallecillo-Rivas M.
Osorio E.
Lynch C.D.
Aguilera F.S.
Toledano R.
Sauro S.
|
Journal of the Mechanical Behavior of Biomedical Materials |
10.1016/j.jmbbm.2020.104232 |
0 |
Ссылка
© 2020 Elsevier Ltd The objective was to state zinc contribution in the effectiveness of novel zinc-doped dentin cements to achieve dentin remineralization, throughout a literature or narrative exploratory review. Literature search was conducted using electronic databases, such as PubMed, MEDLINE, DIMDI, Embase, Scopus and Web of Science. Both zinc-doping silicate and hydroxyapatite-based cements provoked an increase of both bioactivity and intrafibrillar mineralization of dentin. Zinc-doped hydroxyapatite-based cements (oxipatite) also induced an increase in values of dentin nano-hardness, Young's modulus and dentin resistance to deformation. From Raman analyses, it was stated higher intensity of phosphate peaks and crystallinity as markers of dentin calcification, in the presence of zinc. Zinc-based salt formations produced low microleakage and permeability values with hermetically sealed tubules at radicular dentin. Dentin treated with oxipatite attained preferred crystal grain orientation with polycrystalline lattices. Thereby, oxipatite mechanically reinforced dentin structure, by remineralization. Dentin treated with oxipatite produced immature crystallites formations, accounting for high hydroxyapatite solubility, instability and enhanced remineralizing activity.
Читать
тезис
|
Zn-doping of silicate and hydroxyapatite-based cements: Dentin mechanobiology and bioactivity
|
01.02.2021 |
Toledano M.
Osorio R.
Vallecillo-Rivas M.
Osorio E.
Lynch C.D.
Aguilera F.S.
Toledano R.
Sauro S.
|
Journal of the Mechanical Behavior of Biomedical Materials |
10.1016/j.jmbbm.2020.104232 |
0 |
Ссылка
© 2020 Elsevier Ltd The objective was to state zinc contribution in the effectiveness of novel zinc-doped dentin cements to achieve dentin remineralization, throughout a literature or narrative exploratory review. Literature search was conducted using electronic databases, such as PubMed, MEDLINE, DIMDI, Embase, Scopus and Web of Science. Both zinc-doping silicate and hydroxyapatite-based cements provoked an increase of both bioactivity and intrafibrillar mineralization of dentin. Zinc-doped hydroxyapatite-based cements (oxipatite) also induced an increase in values of dentin nano-hardness, Young's modulus and dentin resistance to deformation. From Raman analyses, it was stated higher intensity of phosphate peaks and crystallinity as markers of dentin calcification, in the presence of zinc. Zinc-based salt formations produced low microleakage and permeability values with hermetically sealed tubules at radicular dentin. Dentin treated with oxipatite attained preferred crystal grain orientation with polycrystalline lattices. Thereby, oxipatite mechanically reinforced dentin structure, by remineralization. Dentin treated with oxipatite produced immature crystallites formations, accounting for high hydroxyapatite solubility, instability and enhanced remineralizing activity.
Читать
тезис
|
Detecting a subendocardial infarction in a child with coronary anomaly by three-dimensional late gadolinium enhancement MRI using compressed sensing
|
01.02.2021 |
Suekuni H.
Kido T.
Shiraishi Y.
Takimoto Y.
Hirai K.
Nakamura M.
Komori Y.
Ohmoto K.
Mochizuki T.
Kido T.
|
Radiology Case Reports |
10.1016/j.radcr.2020.11.048 |
0 |
Ссылка
© 2020 Three-dimensional high-resolution late gadolinium enhancement (3D HR LGE) magnetic resonance imaging (MRI) using compressed sensing can help detect small myocardial infarcts. We discuss the case of an 11-year-old child with an anomalous aortic origin of the left coronary artery. Since he was suspected to have coronary stenosis due to anomalous aortic origin of the left coronary artery, cardiovascular MRI, including conventional two-dimensional (2D) LGE MRI and HR 3D LGE MRI, was conducted. Myocardial scars were not clearly observed via 2D LGE MRI; however, 3D HR MRI revealed subendocardial infarction of the anteroseptal wall, which corresponded to the left coronary artery. By applying the compressed sensing technique, 3D HR LGE, MRI enables a detailed assessment of small myocardial infarcts in a clinically feasible scan time.
Читать
тезис
|
Detecting a subendocardial infarction in a child with coronary anomaly by three-dimensional late gadolinium enhancement MRI using compressed sensing
|
01.02.2021 |
Suekuni H.
Kido T.
Shiraishi Y.
Takimoto Y.
Hirai K.
Nakamura M.
Komori Y.
Ohmoto K.
Mochizuki T.
Kido T.
|
Radiology Case Reports |
10.1016/j.radcr.2020.11.048 |
0 |
Ссылка
© 2020 Three-dimensional high-resolution late gadolinium enhancement (3D HR LGE) magnetic resonance imaging (MRI) using compressed sensing can help detect small myocardial infarcts. We discuss the case of an 11-year-old child with an anomalous aortic origin of the left coronary artery. Since he was suspected to have coronary stenosis due to anomalous aortic origin of the left coronary artery, cardiovascular MRI, including conventional two-dimensional (2D) LGE MRI and HR 3D LGE MRI, was conducted. Myocardial scars were not clearly observed via 2D LGE MRI; however, 3D HR MRI revealed subendocardial infarction of the anteroseptal wall, which corresponded to the left coronary artery. By applying the compressed sensing technique, 3D HR LGE, MRI enables a detailed assessment of small myocardial infarcts in a clinically feasible scan time.
Читать
тезис
|
An efficient ultrasonic assisted reverse micelle synthesis route for Fe<inf>3</inf>O<inf>4</inf>@Cu-MOF/core-shell nanostructures and its antibacterial activities
|
01.02.2021 |
Azizabadi O.
Akbarzadeh F.
Danshina S.
Chauhan N.P.S.
Sargazi G.
|
Journal of Solid State Chemistry |
10.1016/j.jssc.2020.121897 |
0 |
Ссылка
© 2020 Elsevier Inc. In the present study, the novel shell nanostructures of Cu-MOF compound were synthesized for the first time by effective, fast and controllable method of ultrasonic assisted reverse micelle. The Fe3O4 nanoparticle was used as core for improving the physicochemical properties and also the stability of these compounds. The results showed that Fe3O4@Cu-MOF/core-shell nanostructures have significant thermal stability compared to pure Cu-MOF samples. In fact, the TEM study verified the development of core shell nanostructures. The EDS with mapping has been applied to be sure about the existence of related elements in the final Fe3O4@Cu-MOF/core-shell nanostructure. The design of the fractional test was used to change the antibacterial properties of these compounds. This method of optimization generates structures with a high surface area that affect the antibacterial properties of the materials. Systematic studies applied in this study, as well as optimization processes, can be developed as a new strategy for controlling the physicochemical properties of the products. Fe3O4@Cu-MOF/core-shell nanostructures have shown reasonably good antibacterial activities against both Gram-positive and Gram-negative bacteria.
Читать
тезис
|
Thin-film contact systems for thermocouples operating in a wide temperature range
|
25.01.2021 |
|
Journal of Alloys and Compounds |
10.1016/j.jallcom.2020.156889 |
0 |
Ссылка
© 2020 Elsevier B.V. For thermoelements operating on the Peltier and Seebeck effects, including multisection ones used at temperatures up to 900 K, the physicochemical principles of creating effective thin-film multilayer contact systems obtained by magnetron ion-plasma sputtering have been developed. The formation of contact systems was carried out on thermoelectric materials based on: Bi2Te3; Sb2Te3; PbTe; GeTe with the increased thermoelectric figure of merit. A structure of contact systems consisting of contact layers providing ohmic contact, adhesion, barrier and interconnection properties of contact systems is proposed and justified. The selection criteria for materials of contact layers are substantiated. For multisection thermoelements operating on the Seebeck effect at temperatures above 500 K, the necessity of introducing diffusion-barrier layers into the structure of contact systems providing reliability and invariability of the properties of contact systems is substantiated. Based on the physicochemical analysis, the thermodynamic and kinetic factors of the stability and degradation of diffusion-barrier layers are determined. The influence of methods for preparing the surface of thermoelectric materials on the adhesion, contact resistance, and thermal stability of contact systems is established. Using Auger electron spectroscopy, the analysis of the causes of thermal stability and degradation of contact systems was carried out. The deposition modes were determined. The effective contact systems were obtained and investigated. The respective systems are based on: Ni; Mo/Ni and Ni/(Ta–W–N)/Ni having the adhesive strength of more than 12 MPa; the contact resistance not exceeding 10−9 Ω m2 and thermal stability at temperatures up to 900 K.
Читать
тезис
|
Thin-film contact systems for thermocouples operating in a wide temperature range
|
25.01.2021 |
Shtern M.
Rogachev M.
Shtern Y.
Gromov D.
Kozlov A.
Karavaev I.
|
Journal of Alloys and Compounds |
10.1016/j.jallcom.2020.156889 |
0 |
Ссылка
© 2020 Elsevier B.V. For thermoelements operating on the Peltier and Seebeck effects, including multisection ones used at temperatures up to 900 K, the physicochemical principles of creating effective thin-film multilayer contact systems obtained by magnetron ion-plasma sputtering have been developed. The formation of contact systems was carried out on thermoelectric materials based on: Bi2Te3; Sb2Te3; PbTe; GeTe with the increased thermoelectric figure of merit. A structure of contact systems consisting of contact layers providing ohmic contact, adhesion, barrier and interconnection properties of contact systems is proposed and justified. The selection criteria for materials of contact layers are substantiated. For multisection thermoelements operating on the Seebeck effect at temperatures above 500 K, the necessity of introducing diffusion-barrier layers into the structure of contact systems providing reliability and invariability of the properties of contact systems is substantiated. Based on the physicochemical analysis, the thermodynamic and kinetic factors of the stability and degradation of diffusion-barrier layers are determined. The influence of methods for preparing the surface of thermoelectric materials on the adhesion, contact resistance, and thermal stability of contact systems is established. Using Auger electron spectroscopy, the analysis of the causes of thermal stability and degradation of contact systems was carried out. The deposition modes were determined. The effective contact systems were obtained and investigated. The respective systems are based on: Ni; Mo/Ni and Ni/(Ta–W–N)/Ni having the adhesive strength of more than 12 MPa; the contact resistance not exceeding 10−9 Ω m2 and thermal stability at temperatures up to 900 K.
Читать
тезис
|
In silico design, building and gas adsorption of nano-porous graphene scaffolds
|
22.01.2021 |
Bellucci L.
Delfino F.
Tozzini V.
|
Nanotechnology |
10.1088/1361-6528/abbe57 |
0 |
Ссылка
© 2020 The Author(s). Published by IOP Publishing Ltd Printed in the UK Graphene-based nano-porous materials (GNM) are potentially useful for all those applications needing a large specific surface area (SSA), typical of the bidimensional graphene, yet realized in the bulk dimensionality. Such applications include for instance gas storage and sorting, catalysis and electrochemical energy storage. While a reasonable control of the structure is achieved in micro-porous materials by using nano-micro particles as templates, the controlled production or even characterization of GNMs with porosity strictly at the nano-scale still raises issues. These are usually produced using dispersion of nano-flakes as precursors resulting in little control on the final structure, which in turn reflects in problems in the structural model building for computer simulations. In this work, we describe a strategy to build models for these materials with predetermined structural properties (SSA, density, porosity), which exploits molecular dynamics simulations, Monte Carlo methods and machine learning algorithms. Our strategy is inspired by the real synthesis process: starting from randomly distributed flakes, we include defects, perforation, structure deformation and edge saturation on the fly, and, after structural refinement, we obtain realistic models, with given structural features. We find relationships between the structural characteristics and size distributions of the starting flake suspension and the final structure, which can give indications for more efficient synthesis routes. We subsequently give a full characterization of the models versus H2 adsorption, from which we extract quantitative relationship between the structural parameters and the gravimetric density. Our results quantitatively clarify the role of surfaces and edges relative amount in determining the H2 adsorption, and suggest strategies to overcome the inherent physical limitations of these materials as adsorbers. We implemented the model building and analysis procedures in software tools, freely available upon request.
Читать
тезис
|
Effects of acute and chronic arecoline in adult zebrafish: Anxiolytic-like activity, elevated brain monoamines and the potential role of microglia
|
10.01.2021 |
Serikuly N.
Alpyshov E.T.
Wang D.M.
Wang J.T.
Yang L.E.
Hu G.J.
Yan D.N.
Demin K.A.
Kolesnikova T.O.
Galstyan D.
Amstislavskaya T.G.
Babashev A.M.
Mor M.S.
Efimova E.V.
Gainetdinov R.R.
Strekalova T.
de Abreu M.S.
Song C.
Kalueff A.V.
|
Progress in Neuro-Psychopharmacology and Biological Psychiatry |
10.1016/j.pnpbp.2020.109977 |
0 |
Ссылка
© 2020 Elsevier Inc. Arecoline is a naturally occurring psychoactive alkaloid with partial agonism at nicotinic and muscarinic acetylcholine receptors. Arecoline consumption is widespread, making it the fourth (after alcohol, nicotine and caffeine) most used substance by humans. However, the mechanisms of acute and chronic action of arecoline in-vivo remain poorly understood. Animal models are a valuable tool for CNS disease modeling and drug screening. Complementing rodent studies, the zebrafish (Danio rerio) emerges as a promising novel model organism for neuroscience research. Here, we assessed the effects of acute and chronic arecoline on adult zebrafish behavior and physiology. Overall, acute and chronic arecoline treatments produced overt anxiolytic-like behavior (without affecting general locomotor activity and whole-body cortisol levels), with similar effects also caused by areca nut water extracts. Acute arecoline at 10 mg/L disrupted shoaling, increased social preference, elevated brain norepinephrine and serotonin levels and reduced serotonin turnover. Acute arecoline also upregulated early protooncogenes c-fos and c-jun in the brain, whereas chronic treatment with 1 mg/L elevated brain expression of microglia-specific biomarker genes egr2 and ym1 (thus, implicating microglial mechanisms in potential effects of long-term arecoline use). Finally, acute 2-h discontinuation of chronic arecoline treatment evoked withdrawal-like anxiogenic behavior in zebrafish. In general, these findings support high sensitivity of zebrafish screens to arecoline and related compounds, and reinforce the growing utility of zebrafish for probing molecular mechanisms of CNS drugs. Our study also suggests that novel anxiolytic drugs can eventually be developed based on arecoline-like molecules, whose integrative mechanisms of CNS action may involve monoaminergic and neuro-immune modulation.
Читать
тезис
|
A microwave-triggered opening of the multifunctional polyelectrolyte capsules with nanodiamonds in the shell composition
|
06.01.2021 |
Borodina T.
Yurina D.
Sokovikov A.
Karimov D.
Bukreeva T.
Khaydukov E.
Shchukin D.
|
Polymer |
10.1016/j.polymer.2020.123299 |
0 |
Ссылка
© 2020 Microcapsules are ideal cargo platform for variety of applications such as drug delivery, sensing and imaging due to the combination of a simplicity fabrication and flexibility in the design. We developed remotely collapsing polymer capsules to response to external microwave treatment. The multilayer structure of the capsules was designed to create a polyfunctional system intercalating with nanodiamonds (NDs) and upconversion nanoparticles (UCNPs) into the polyelectrolyte shell. NDs empower local overheating to the microcapsules, while UCNPs provide opportunity to luminescent thermal sensing. UCNPs consist of inorganic crystalline host matrix - hexagonal β-phase NaYF4, doped with pairs of trivalent lanthanide ions, which play role of sensitizer (Yb3+) and activator (Er3+). The microwave triggering followed by the capsule heating results in the controlled destruction of the polyelectrolyte shell with subsequent cargo release. UCNPs luminescence was utilized to determine the local temperature of the capsule shell at nanoscale under GHz ultrasonic treatment. Our novel approach provides on demand microcapsule system destruction, which can be used in the development of nanotheranostic platform for the unification of diagnosis and treatment of various diseases.
Читать
тезис
|
Assessment of ROS Production in the Mitochondria of Live Cells
|
01.01.2021 |
Angelova P.R.
Dinkova-Kostova A.T.
Abramov A.Y.
|
Methods in molecular biology (Clifton, N.J.) |
10.1007/978-1-0716-0896-8_2 |
0 |
Ссылка
Production of reactive oxygen species (ROS) in the mitochondria plays multiple roles in physiology, and excessive production of ROS leads to the development of various pathologies. ROS in the mitochondria are generated by various enzymes, mainly in the electron transporvt chain, and it is important to identify not only the trigger but also the source of free radical production. It is important to measure mitochondrial ROS in live, intact cells, because activation of ROS production could be initiated by changes in extramitochondrial processes which could be overseen when using isolated mitochondria. Here we describe the approaches, which allow to measure production of ROS in the matrix of mitochondria in live cells. We also demonstrate how to measure kinetic changes in lipid peroxidation in mitochondria of live cells. These methods could be used for understanding the mechanisms of pathology in a variety of disease models and also for testing neuro- or cardioprotective chemicals.
Читать
тезис
|
Assessment of ROS Production in the Mitochondria of Live Cells
|
01.01.2021 |
Angelova P.R.
Dinkova-Kostova A.T.
Abramov A.Y.
|
Methods in molecular biology (Clifton, N.J.) |
10.1007/978-1-0716-0896-8_2 |
0 |
Ссылка
Production of reactive oxygen species (ROS) in the mitochondria plays multiple roles in physiology, and excessive production of ROS leads to the development of various pathologies. ROS in the mitochondria are generated by various enzymes, mainly in the electron transporvt chain, and it is important to identify not only the trigger but also the source of free radical production. It is important to measure mitochondrial ROS in live, intact cells, because activation of ROS production could be initiated by changes in extramitochondrial processes which could be overseen when using isolated mitochondria. Here we describe the approaches, which allow to measure production of ROS in the matrix of mitochondria in live cells. We also demonstrate how to measure kinetic changes in lipid peroxidation in mitochondria of live cells. These methods could be used for understanding the mechanisms of pathology in a variety of disease models and also for testing neuro- or cardioprotective chemicals.
Читать
тезис
|
Flow-mode water treatment under simultaneous hydrodynamic cavitation and plasma
|
01.01.2021 |
Abramov V.O.
Abramova A.V.
Cravotto G.
Nikonov R.V.
Fedulov I.S.
Ivanov V.K.
|
Ultrasonics Sonochemistry |
10.1016/j.ultsonch.2020.105323 |
0 |
Ссылка
© 2020 Elsevier B.V. Over the last two decades, the scientific community and industry have made huge efforts to develop environmental protection technologies. In particular, the scarcity of drinking water has prompted the investigation of several physico-chemical treatments, and synergistic effects have been observed in hyphenated techniques. Herein, we report the first example of water treatment under simultaneous hydrodynamic cavitation and plasma discharge with the intense generation of radicals, UV light, shock waves and charged particles. This highly reactive environment is well suited to the bulk treatment of polluted water (i.e. E. coli disinfection and organic pollutant degradation). We have developed a new prototype and have efficiently applied this hybrid technology to water disinfection and the complete degradation of methanol in water with the aim of demonstrating its scalability. We have analyzed the mechanisms of water disinfection under the abovementioned conditions and verified them by measuring cavitation noise spectra and plasma emission spectra. We have also used the degradation of textile dyes and methanol solutions as an indicator for the formation of radicals.
Читать
тезис
|
Flow-mode water treatment under simultaneous hydrodynamic cavitation and plasma
|
01.01.2021 |
Abramov V.O.
Abramova A.V.
Cravotto G.
Nikonov R.V.
Fedulov I.S.
Ivanov V.K.
|
Ultrasonics Sonochemistry |
10.1016/j.ultsonch.2020.105323 |
0 |
Ссылка
© 2020 Elsevier B.V. Over the last two decades, the scientific community and industry have made huge efforts to develop environmental protection technologies. In particular, the scarcity of drinking water has prompted the investigation of several physico-chemical treatments, and synergistic effects have been observed in hyphenated techniques. Herein, we report the first example of water treatment under simultaneous hydrodynamic cavitation and plasma discharge with the intense generation of radicals, UV light, shock waves and charged particles. This highly reactive environment is well suited to the bulk treatment of polluted water (i.e. E. coli disinfection and organic pollutant degradation). We have developed a new prototype and have efficiently applied this hybrid technology to water disinfection and the complete degradation of methanol in water with the aim of demonstrating its scalability. We have analyzed the mechanisms of water disinfection under the abovementioned conditions and verified them by measuring cavitation noise spectra and plasma emission spectra. We have also used the degradation of textile dyes and methanol solutions as an indicator for the formation of radicals.
Читать
тезис
|
Flow-mode water treatment under simultaneous hydrodynamic cavitation and plasma
|
01.01.2021 |
Abramov V.O.
Abramova A.V.
Cravotto G.
Nikonov R.V.
Fedulov I.S.
Ivanov V.K.
|
Ultrasonics Sonochemistry |
10.1016/j.ultsonch.2020.105323 |
0 |
Ссылка
© 2020 Elsevier B.V. Over the last two decades, the scientific community and industry have made huge efforts to develop environmental protection technologies. In particular, the scarcity of drinking water has prompted the investigation of several physico-chemical treatments, and synergistic effects have been observed in hyphenated techniques. Herein, we report the first example of water treatment under simultaneous hydrodynamic cavitation and plasma discharge with the intense generation of radicals, UV light, shock waves and charged particles. This highly reactive environment is well suited to the bulk treatment of polluted water (i.e. E. coli disinfection and organic pollutant degradation). We have developed a new prototype and have efficiently applied this hybrid technology to water disinfection and the complete degradation of methanol in water with the aim of demonstrating its scalability. We have analyzed the mechanisms of water disinfection under the abovementioned conditions and verified them by measuring cavitation noise spectra and plasma emission spectra. We have also used the degradation of textile dyes and methanol solutions as an indicator for the formation of radicals.
Читать
тезис
|