Репозиторий Университета

Inhibition of kras-derived exosomes downregulates immunosuppressive BACH2/GATA-3 expression via RIP-3 dependent necroptosis and miR-146/miR-210 modulation


  • Petanidis S.
  • Domvri K.
  • Porpodis K.
  • Anestakis D.
  • Freitag L.
  • Hohenforst-Schmidt W.
  • Tsavlis D.
  • Zarogoulidis K.
Дата публикации:01.02.2020
Журнал: Biomedicine and Pharmacotherapy
БД: Scopus
Ссылка: Scopus

Аннтотация

© 2019 The Authors Immunosuppressive chemoresistance is a major challenge in lung cancer treatment. Exosomes present in the tumor microenviroment are implicated in chemoresistant-related immune suppression, and metastasis but the exact pathogenic role of lung-derived exosomes is still uncertain. Recent reports reveal that lung cancer pathogenesis is strictly associated with a exosomal tumor supportive status and a dysfunctional immune system. In this study, we investigate the role of Kras-derived exosomes in chemoresistant immunosuppression in which neoplastic cells create a metabolic-sustained microenvironment. Findings reveal that Kras-derived exosomes induce regulation of SMARCE1/NCOR1 chromatin remodeling genes promoting pre-metastatic niche formation in naive mice and consequently increase lung metastatic burden. Furthermore, exosomal Kras inhibition downregulated transcription factor BACH2/GATA-3 expression in lung tumor tissues by shifting pyruvate/PKM2 dependent metabolism, contributing to a tumor-restraining status. Further co-treatment with carboplatin triggered RIP3/TNFa dependent necroptosis in ex vivo cells accompanied by differential expression of immunosuppressive miR-146/miR-210 regulators in metastatic lung cancer patients. Overall, these findings demonstrate the multifaceted roles of Kras-derived exosomes in sustaining lung immunosuppressive metastasis and provide new opportunities for effective metastasis inhibition, especially in chemoresistant tumors.


Вернуться назад