Репозиторий Университета

Increase in the current variance in bilayer lipid membranes near phase transition as a result of the occurrence of hydrophobic defects


  • Anosov A.
  • Smirnova E.
  • Sharakshane A.
  • Nikolayeva E.
  • Zhdankina Y.
Дата публикации:01.02.2020
Журнал: Biochimica et Biophysica Acta - Biomembranes
БД: Scopus
Ссылка: Scopus

Аннтотация

© 2019 Most researchers associate the increase in the permeability of lipid bilayers of artificial and biological membranes observed in various experiments with the formation of hypothetical hydrophobic and hydrophilic pores. Although the existence of hydrophobic defects, as the first stage of the formation of a hydrophilic pore, was hypothesized decades ago from electroporation experiments, the difficulty of describing this stage is determined by the lack of experimental data confirming the existence or at least associated with hydrophobic pores. We explored the increase in the current variance through the lipid membrane, observed when approaching the phase transition from the side of high temperatures, and have associated it with capacitive currents arising in response to the formation of hydrophobic pores. Assuming that the number of hydrophobic pores in a membrane follows a Poisson distribution, and thus, the mean number of hydrophobic pores is equal to the variance of that number, we used the measurements of the membrane current variance to evaluate the number of hydrophobic pores. Analysis of experimental data within this model allows us to estimate the number of hydrophobic pores at or above the phase transition and shows that the number of hydrophobic pores in a membrane close to the phase transition increased 20 times compared to the number of hydrophobic pores existing in the membrane far from the melting transition.


Вернуться назад