ФОМЕНКО Екатерина Владимировна

ВЛИЯНИЕ ТАФТЦИНА-ПГП (СЕЛАНКА) НА МОРФОФУНКЦИОНАЛЬНОЕ СОСТОЯ-НИЕ ГЕПАТОЦИТОВ ПРИ РАЗЛИЧНЫХ ВИДАХ СТРЕССА

14.03.03. – патологическая физиология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата медицинских наук Работа выполнена в ФГБОУ ВО «Курский государственный медицинский университет» Минздрава России

Научные руководители:

доктор медицинских наук, профессор доктор медицинских наук, профессор

Бобынцев Игорь Иванович Иванов Александр Викторович.

Официальные оппоненты:

Воронина Татьяна Александровна, доктор медицинских наук, профессор, ФГНУ «Научноисследовательский институт фармакологии имени В.В. Закусова», лаборатория психофармакологии, заведующий лабораторией

Онищенко Нина Андреевна, доктор медицинских наук, профессор, ФГБУ «Федеральный научный центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России, отдел биомедицинских технологий и тканевой инженерии, главный специалист отдела

Ведущая организация: ФГБОУ ВО «Московский государственный медико-стоматологический университет имени А.И. Евдокимова» Минздрава России

С диссертацией можно ознакомиться в библиотеке ЦНМБ ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет) по адресу: 119034, г. Москва, Зубовский бульвар, д. 37/1 и на сайте организации: https://www.sechenov.ru/

Автореферат разослан "___" _____ 2019 г.

Ученый секретарь диссертационного совета доктор медицинских наук, профессор

Калюжин Олег Витальевич

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследования. Печень играет ключевую роль в поддержании гомеостаза организма и достижении адаптивного результата при стрессорной нагрузке. Высокий уровень психоэмоционального стресса у больных с заболеваниями печени коррелирует с более тяжелым их течением (Vere C.C. et al., 2009; Polis S. and Fernandez R., 2015; Li C. et al., 2016; Nagano J. et al., 2004). Стрессиндуцированный рост уровня катехоламинов и ГКС запускает в гепатоцитах и клетках микроокружения каскад патологических и адаптационно-приспособительных реакций, реализующийся посредством действия периферических медиаторов (например, цитокинов, серотонина) (Chida Y. et al., 2006; Ma Z. et al., 2013; Panuganti S.D. et al., 2006; Liu Y.Z. et al., 2014; Катикова О.Ю., 2009; Fu J. et al., 2016). Нарушение процессов адаптации сопровождается развитием стеатогепатоза, цитолитическим повреждением и апоптозом гепатоцитов, нарушением гомеостатической функции печени, что запускает процессы репарационной регенерации, чрезмерная активация которой может приводить к фиброзированию и развитию цирроза (Выборова И.С. и др., 2005; Amin S. N. et al. 2017; Chida Y. et al., 2004; Zhu Q. et al., 2014).

Стрессиндуцированные изменения в печени обусловливают необходимость разработки патогенетически обоснованных подходов к их коррекции. Одним из перспективных направлений в данном случае представляется использование регуляторных пептидов, обладающих широким спектром биологических эффектов и способных оказывать влияние на различные звенья стрессорной реакции. К их числу относится синтетический гибридный пептид селанк с выраженным стресспротекторным и адаптогенным действием (Павлов Т.С. и др., 2007; Kasian A. et al., 2017; Петровский А.К. и др., 2017). Нейротропные эффекты селанка включают анксиолитическое, антидепрессантное, ноотропное, антиастеническое и церебропротекторное действия (Медведев В.Э. и др., 2014, 2015; Саркисова К.Ю. и др., 2008; Телешова Е.С. и др., 2010; Скворцова В.И. и др., 2009), которые могут оказывать влияние на центральные механизмы стрессорной реакции. Регулирующие эффекты селанка в отношении метаболизма и рецепции нейротрансмиттеров (Козловский И.И. и др., 2008; Семенова Т.П. и др., 2009; Сломинский П.А. и др., 2017; Наркевич В.Б. и др., 2008), экспрессии и секреции цитокинов (Андреева Л.А. и др., 2010; Мезен-цева М.В. и др., 2011; Ершов Ф.И. и др., 2009; Учакина О.Н. и др., 2008) могут обусловливать действие пептида на периферические механизмы реализации стресса.

Степень разработанности темы. Учитывая выраженную активность селанка в отношении нейромедиаторов (серотонин, гамма-аминомасляная кислота) и цитокинов, играющих важную роль в развитии стрессиндуцированных реакций в печени, является целесообразным изучение воз-

можности применения пептида для их коррекции. Однако влияние пептида на морфофункциональное состояние печени в условиях стресса ранее не исследовалось.

Цель работы – изучение влияния селанка на морфофункциональное состояние гепатоцитов в условиях эмоционально-болевого и иммобилизационного стресса различной продолжительности.

Задачи исследования

- 1. Изучить влияние селанка на изменение биохимических показателей функционального состояния гепатоцитов в сыворотке крови и гомогенате печени в условиях острого и хронического эмоционально-болевого стресса.
- 2. Исследовать морфологические изменения гепатоцитов на фоне введения селанка в условиях острого и многократного эмоционально-болевого стресса.
- 3. Изучить влияние селанка на изменение биохимических показателей функционального состояния гепатоцитов в сыворотке крови и гомогенате печени в условиях острого и многократного иммобилизационного стресса.
- 4. Исследовать морфологические изменения гепатоцитов на фоне введения селанка в условиях острого и многократного иммобилизационного стресса.
- 5. Выявить характер корреляционных взаимосвязей показателей морфофункционального состояния гепатоцитов на фоне введения селанка в условиях различных видов стрессорного воздействия.

Научная новизна. В работе впервые проведено комплексное исследование влияния селанка на механизмы перекисного окисления и антиоксидантной защиты в гепатоцитах, протеинсинтетическую функцию и репаративно-восстановительные процессы. Установлено, что выраженность и направленность действия селанка зависят от величины применяемой дозы, модальности и продолжительности стрессорного воздействия. Впервые выявлены дозы селанка, оказывающие наиболее выраженное воздействие на морфофункциональное состояние гепатоцитов в условиях эмоционально-болевого и иммобилизационного стресса различной продолжительности. Впервые с использованием корреляционного анализа выявлено влияние селанка на взаимосвязи показателей морфофункционального состояния печени в условиях различных видов стресса.

Теоретическая и практическая значимость исследования. Экспериментально показано влияние селанка на морфофункциональное состояние гепатоцитов в условиях различных видов стресса, которое следует учитывать при его применении в клинической практике и разработке методов коррекции стрессиндуцированных патологических сдвигов в печени.

На основании результатов исследования получены патенты «Применение пептида Thr-Lys-Pro-Arg-Pro-Gly-Pro (селанк) для гепатопротекторного воздействия при остром иммобилизационном стрессе» (патент РФ на изобретение № 2582963 от 27.04.2015) и «Применение пептида Thr-Lys-Pro-Arg-Pro-Gly-Pro (селанк) для гепатопротекторного воздействия при хроническом эмоционально-болевом стрессе» (патент РФ на изобретение № 2629832 от 14.11.2016).

Полученные данные расширяют существующие представления о роли регуляторных пептидов в организме, полифункциональном характере их биологических эффектов и плейотропности действия фармакологических препаратов на их основе.

Методология и методы исследования. Методология исследования заключалась в изучении внутрибрюшного введения селанка на функциональное состояние гепатоцитов (показатели протеинсинтетической функции, выраженности процессов цитолиза и перекисного окисления липидов, активности системы антиоксидантной защиты), а также на их морфологические показатели. В исследовании были применены современные, адекватные поставленным задачам описательный, экспериментальный, биохимический, морфологический и статистический методы.

Основные положения, выносимые на защиту

- 1. Селанк оказывает влияние на морфофункциональное состояние гепатоцитов в условиях стрессорного воздействия различной модальности и длительности за счет изменения протеинсинтетической функции, активности перекисного окисления и репаративно-восстановительных процессов.
- 2. Выраженность и направленность выявленных эффектов селанка зависят от вида стресса и сопровождаются изменением характера корреляционных взаимосвязей исследованных показателей.
- 3. Установленные эффекты селанка имеют стресс-лимитирующий, адаптогенный и гепатопротекторный характер.

Степень достоверности и апробация работы. Достоверность результатов работы, правомочность выводов и научных положений основаны на достаточном числе наблюдений, использовании современных и информативных методов оценки исследованных показателей, применении адекватных методов статистической обработки анализируемых данных.

Основные положения диссертации были представлены и обсуждены на межрегиональной научной конференции «Актуальные проблемы клинической и экспериментальной патологии» (Рязань, 2017), научно-практической конференции «Павловские чтения» (Курск, 2017), восьмой меж-

дународной дистанционной научной конференции «Инновации в медицине» (Курск, 2017), Всероссийской научной конференции «Университетская наука: взгляд в будущее» (Курск, 2018).

Внедрение результатов исследования. Материалы диссертации используются в лекционных курсах кафедр нормальной физиологии, патофизиологии, фармакологии и гистологии, эмбриологии, цитологии Курского государственного медицинского университета; на кафедре патологической физиологии Гомельского государственного медицинского университета; в научно-исследовательской работе Отдела химии физиологически активных веществ Федерального государственного бюджетного учреждения науки Институт молекулярной генетики Российской академии наук.

Соответствие диссертации паспорту научной специальности. Основные научные положения диссертации соответствуют паспорту специальности 14.03.03 — патологическая физиология, а именно пунктам 2, 7, 8, и 10 области исследования, указанной в паспорте данной специальности.

Публикации. По материалам диссертации опубликовано 13 работ, из них 2 иностранных публикации; 6 публикаций в журналах, включенных в перечень ВАК Минобрнауки России (в том числе 2 иностранных публикации; 4 – в изданиях, индексируемых в базах Web of Science и Scopus). 2 патента РФ на изобретения.

Личный вклад автора в исследование. Личный вклад автора осуществлялся на всех этапах работы в форме планирования экспериментов (85%), их непосредственного выполнения (95%), обработке полученных результатов (100%), анализа литературы (100%), обсуждения и трактовки результатов (85%), написания статей и тезисов (85%), написания диссертации и автореферата (95%).

Структура и объем работы. Диссертация состоит из введения, обзора данных литературы, описания материалов и методов исследования, изложения собственных результатов исследования, заключения, выводов, практических рекомендаций, списка сокращений, приложения и списка литературы, включающего 274 источника, в том числе 107 отечественных и 167 зарубежных. Диссертация изложена на 192 страницах машинописного текста, содержит таблиц — 12, рисунков — 29.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Исследование выполнено с использованием 200 половозрелых крыс-самцов Вистар массой 210-350 г, полученных из филиала «Столбовая» ФГБУН «Научный центр биомедицинских технологий Федерального медико-биологического агентства». Содержание животных и постановка экспериментов проводились в соответствии с приказом Министерства здравоохранения РФ от 01 апреля

2016 г. № 199н «Об утверждении Правил надлежащей лабораторной практики» и международными правилами «Guide for the Care and Use of Laboratory Animals» (NAP, 2011) под контролем Регионального этического комитета (протокол № 4 от 08.04.2012 г).

В работе использовали гептапептид селанк (Thr-Lys-Pro-Arg-Pro-Gly-Pro), синтезированный в Федеральном государственном бюджетном учреждении науки Институт молекулярной генетики Российской академии наук. Селанк является аналогом тафтцина (участок СН₂-домена Fсфрагмента IgG) с присоединенным к С-концу глипролином Pro-Gly-Pro. Раствор пептида в физиологическом растворе вводили внутрибрюшинно за 15 мин до начала стрессорного воздействия в дозах 100, 300 и 1000 мкг/кг. Контрольным стрессированным животным вводили физиологический раствор в объеме 1 мл на 1 кг массы за 15 минут до начала стрессорного воздействия. Контрольные нестрессированные животные получали инъекции физиологического раствора в объеме, эквивалентном контрольным стрессированным животным. Каждая опытная группа включала 10 животных.

Моделирование эмоционально-болевого стресса осуществляли с помощью модификации методик Matthews D.B. et al. (2008) и Hranilovic D. et al. (2008). Животные попарно помещались в камеру с решетчатым полом, на который каждые 15 секунд с помощью программируемого электростимулятора подавались импульсы тока силой 0,2-0,3 mA и продолжительностью 5 секунд, создающие электрокожное раздражение лап. Острый эмоционально-болевой стресс (ОЭБС) моделировался однократным 30-минутным воздействием, многократный эмоционально-болевой стресс (МЭБС) — аналогичным воздействием на протяжении 5 последовательных дней.

Моделирование иммобилизационного стресса осуществляли с использованием модификации методик Chen H. et al. (2008), Wang S.W. (2002) и Zheng J. et al. (2009). Иммобилизацию и фиксацию животных в положении на спине осуществляли в индивидуальных пластиковых боксах, соответствующих размерам животных. Острый иммобилизационный стресс (ОИС) моделировали однократной фиксацией животных в течение 4 часов. Многократный иммобилизационный стресс (МИС) – в течение 2 часов на протяжении 5 последовательных дней.

Методика забора биологического материала. По окончании стрессорного воздействия животных выводили из эксперимента методом обескровливания под эфирным наркозом. Забор крови производили из правого желудочка сердца с использованием закрытых систем взятия венозной крови S-Monovette® (SARSTEDT, Германия). После атравматичного извлечения печени проводили забор стандартных частей органа для гомогенизации и гистологического исследования.

Биохимические методы исследования. В сыворотке крови при помощи наборов Fluitest® (Analyticon, Германия) и анализатора «Виталаб Флексор Е» (Нидерланды) определяли концентрацию общего белка биуретовым методом, концентрации аспартатаминотрансферазы (AcAT) и аланинаминотрансферазы (АлАТ) кинетическим методом, концентрацию мочевины кинетическим уреазным методом (Карпищенко А.И., 1999; Камышников В.С., 2003).

Концентрацию МДА определяли с использованием набора «ТБК-Агат» (АГАТ-МЕД, Россия) и спектрофотометра «303 PD» (Ареl, Япония) (Рагино Ю.Н, 1998). Активность ферментов антиоксидантной системы определяли с использованием спектрофотометра «303 PD» (Ареl, Япония). Активность супероксиддисмутазы (СОД) оценивали на основе степени торможения автоокисления кверцитина (Костюк В.А. и др., 1990). Активность каталазы определяли методом, основанным на способности Н₂О₂ образовывать стойкий окрашенный комплекс с солями молибдена (Королюк М.А. и др., 1988). Общую антиокислительную активность (ОАА) определяли методом, основанным на степени ингибирования аскорбат- и ферроиндуцированного окисления твина-80 до МДА, при помощи биохимического анализатора «ВТЅ-330» (ВіоЅуѕtems, Испания) (Галактионова Л.П. и др., 1998).

Морфометрическое исследование печени проводили с использованием гистологических срезов стандартных участков печени, окрашенных гематоксилином и эозином, после создания электронной галереи микрофотографий с помощью сканера Mirax Desk (Carl Zeiss Microimaging GMbH, Германия). В программе Pannoramic Viewer 1.15.4 (3DHISTECH ltd, Венгрия) проводили измерение площадей гепатоцитов и их ядер в перипортальных (ПО) и центролобулярных отделах (ЦО) печеночных долек с последующим расчетом площадей цитоплазмы и ядерноцитоплазматического отношения (ЯЦО). Подсчет одно- и многоядерных, одно- и многоядрышковых гепатоцитов в ПО и ЦО проводили с помощью пакета программ ImageJ.

Статистическую обработку данных проводили в программе MS Excel и программной среде вычислений R. В зависимости от типа распределения признаков статистическую достоверность результатов определяли с использованием непарного параметрического t-критерия Стьюдента, непараметрического критерия Манна-Уитни, дисперсионного анализа (one-way ANOVA и анализа по Крускалу-Уоллису) с применением критерия Тьюки. Контроль групповой вероятности ошибки осуществляли с помощью метода Холма-Бонферрони. Корреляционные связи между признаками рассчитывали с использованием коэффициента ранговой корреляции Спирмена (r_s) (Мастицкий С.Э., 2015; Crawley M.J., 2012).

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

Влияние селанка на морфофункциональное состояние гепатоцитов крыс в условиях острого эмоционально-болевого стресса (ОЭБС).

В контрольной группе ОЭБС не вызывал достоверных изменений большинства исследованных показателей сыворотки и гомогената печени, что может объясняться небольшой продолжительностью воздействия (Chida Y. et al., 2004; Бе-лых А.Е. и др., 2015). Отмеченный рост уровня мочевины в сыворотке на 24,9% (p=0,001) может быть связан с симпатической стимуляцией, усилением катаболизма белков и синтеза мочевины в гепатоцитах (Morris, J.S.M. 2002; Díaz-Cruz A. et al., 2011).

Введение селанка в дозах 100, 300 и 1000 мкг/кг вызывало снижение уровня мочевины соответственно на 20,4% (p=0,036), 31,3% (p<0,001) и 30,9% (p=0,003), что может объясняться анксиолитическими свойствами пептида и снижением выраженности тревоги, уровня катехоламинов и интенсивности катаболических процессов. Снижение числа корреляционных связей при введении пептида в дозах 100 и 1000 мкг/кг также может свидетельствовать о наступлении состояния адаптации.

Морфологические изменения при ОЭБС представляли собой нарушения микроциркуляции, развитие воспалительной инфильтрации и зернистости цитоплазмы гепатоцитов, что может быть обусловлено быстрым симпатонейральным ответом. Введение селанка во всех использованных дозах вело к коррекции морфологических изменений, при этом наиболее выраженный эффект в отношении зернистости и вакуолизации цитоплазмы гепатоцитов наблюдался при использовании пептида в дозе 300 мкг/кг, а наибольшая коррекция воспалительной инфильтрации отмечалась при введении селанка в дозе 100 мкг/кг.

Действие ОЭБС сопровождалось изменением морфологических показателей гепатоцитов: ростом площадей гепатоцитов в ПО и ЦО соответственно на 8,7% (p<0,001) и 7,4% (p=0,002), ростом площадей их ядер (на 10,9%, p<0,001 и 13,9%, p<0,001) и цитоплазмы (на 7,1%, p=0,002, и на 6,3%, p=0,009) без изменения ЯЦО. Данные изменения могут отражать активацию различных сигнальных путей и усиление транскрипции целевых генов. При этом сильные прямые корреляционные связи между размером ядра, уровнем транскрипции, размером клетки и степенью активации сигнальных путей (Schmidt E.E. and Schibler U., 1995; Kim R.D. et al., 2001) свидетельствуют о развитии компенсаторной реакции гепатоцитов в ответ на стрессорное воздействие.

Размеры гепатоцитов при применении селанка не изменялись, что согласуется с данными об отсутствии его эффектов в отношении неизмененных показателей и функций (Kasian A. et al., 2017;

Васильева Е.В. и др., 2016; Надорова А.В. и др., 2014). Увеличение площадей ядер гепатоцитов при введении селанка в дозе 100 мкг/кг (на 7,1%, p=0,001 в ПО и на 6,3%, p=0,042 в ЦО) и 1000 мкг/кг (на 8,0%, p=0,047 в ЦО) может являться следствием усиления в них процессов транскрипции, учитывая способность пептида регулировать экспрессию широкого спектра генов в различных типах клеток и тканей (Коломин Т.А. и др., 2010, 2011, 2013), таким образом, применение селанка в условиях ОЭБС усиливает процессы адаптации.

Влияние селанка на морфофункциональное состояние гепатоцитов крыс в условиях многократного эмоционально-болевого стресса (МЭБС).

Как видно из таблицы 1, МЭБС вызывал более выраженные по сравнению с ОЭБС сдвиги показателей оксидативного статуса печени: наблюдался рост уровня МДА, активности СОД и каталазы. Более высокий уровень ПОЛ может объясняться тем обстоятельством, что за данный промежуток времени не развивается ГКС- и ЛПС-зависимая активация клеток Купфера, являющихся основным источником АФК при стрессе (Vanuytsel T. et al., 2014; Vrba J. and Modriansky M. 2002).

Таблица 1 – Влияние селанка на исследованные биохимические показатели в условиях моделирования МЭБС (М±m)

Группа	Контроль	Воздействие стрессорного фактора				
	без стресса	Контроль со	Введение селанка в дозе:			
	(n=10)	стрессом (n=10)	100 мкг/кг	300 мкг/кг	1000 мкг/кг	
Показатель	(11–10)	Стрессом (п=10)	(n=10)	(n=10)	(n=10)	
Показатели сыворотки крови						
Мочевина, моль/л	5,4±0,2	$4,1\pm0,4^{1}$	4,9±0,3	5,3±0,4*	4,9±0,3	
Показатели гомогенизата печени						
МДА, мкмоль/мл	3,8±0,3	4,7±0,3 ¹	3,6±0,3*	3,8±0,2*	4,2±0,2	
СОД, усл. ед.	3,2±0,2	$3,7\pm0,2^{1}$	3,4±0,2	3,1±0,2*	3,2±0,1*	
Каталаза, мккат/л	6,1±0,2	$6,9\pm0,4^{1}$	6,2±0,3	5,7±0,4*	5,9±0,3*	

Примечание: 1 – различия достоверны ($p \le 0.05$) по сравнению с контрольной группой крыс, не подвергавшихся стрессу; * – различия достоверны ($p \le 0.05$) по сравнению с контрольной группой крыс, подвергавшихся стрессу.

Высокий уровень АФК блокирует синтез мочевины (Díaz-Cruz A. et al., 2007), что может приводить к снижению ее уровня при МЭБС. Одновременное повышение активности СОД и каталазы может являться следствием стимулирующего действия ПОЛ на активность антиоксидантных

ферментов (Rhee S.G. et al., 2005; Furukawa Y. et al., 2004), а также усилением их транскрипции и экспрессии под влиянием ГКС (Djordjevic J. et al., 2010; McIntosh L.J., 1998; Le P.P. et al., 2005).

Применение селанка в дозе 300 мкг/кг нивелировало вызванные МЭБС изменения показателей функционального состояния гепатоцитов до уровня нестрессированных животных. Введение селанка в других дозах вызывало коррекцию отдельных показателей: в дозе 100 мкг/кг наблюдалось снижение уровня МДА, а в дозе 1000 мкг/кг – уменьшение активности СОД и каталазы. В основе антиоксиданных эффектов селанка может лежать как его центральное анксиолитическое действие, снижающее выраженность нейрогуморальной стимуляции, так и периферические эффекты пептида в отношении интерлейкинового профиля иммунных клеток (Ершов Ф.И. и др., 2009; Учакина О.Н. и др., 2008; Андреева Л.А. и др., 2010).

МЭБС в сравнении с ОЭБС сопровождался развитием менее выраженной воспалительной инфильтрации и более выраженной зернистости и вакуолизации цитоплазмы гепатоцитов. При этом действие МЭБС вызвало рост площадей ядер и ЯЦО гепатоцитов в ПО и ЦО (таблица 2), что свидетельствует о запуске процессов репликации ДНК и пролиферации, как регенераторного ответа на функциональный дефицит печени (Arias I.M. et al., 2011). Однако отсутствие гипертрофии цитоплазмы и рост числа двуядерных гепатоцитов (на 3,7%, p<0,001 в ПО) не согласуется с данными литературы о стадийности процессов регенераторной пролиферации (Міуаока Y. et al., 2012) и может объясняться развитием при МЭБС энергетического дефицита и оксидативного стресса, истощением внутриклеточных включений гликогена и усилением автофагии.

Применение пептида в дозах 300 и 1000 мкг/кг вызвало уменьшение зернистости цитоплазмы гепатоцитов и их ЯЦО. Коррекция ЯЦО гепатоцитов в ЦО происходила на фоне роста площадей их цитоплазмы. Подобные изменения наблюдались у гепатоцитов в ПО при введении селанка в дозе 300 мкг/кг. При введении селанка в дозе 1000 мкг/кг изменение ЯЦО гепатоцитов в ПО происходило на фоне снижения площади ядер. Усиление гипертрофических процессов гепатоцитов может быть обусловлено меньшей потерей гликогена при снижении уровня симпатической стимуляции. Уменьшение уровня катехоламинов также ведет к меньшей стимуляции репликации ДНК и снижению площади ядер (Wen X. et al., 2016; Ohtake Y. et al., 2010; Kobayashi T. et al., 2012). Снижение числа многоядерных гепатоцитов при введении селанка в дозе 300 мкг/кг (на 2,5%, p=0,021 в ПО и на 2,2%, p=0,049 в ЦО) и 100 мкг/кг (на 2,3%, p=0,012 в ПО) свидетельствует об активации их деления. Применение селанка во всех использованных дозах вызывало снижение числа и силы корреляционных связей, что может свидетельствовать о более быстром развитии адаптации, достижение которой затруднено при МЭБС у контрольных животных. Введение пептида в дозах 100

и 1000 мкг/кг увеличивало число параметров, имеющих корреляционные связи, и меняло характер связей, что может быть обусловлено сменой стратегии стрессорной адаптации.

Таблица 2 – Влияние селанка на кариоцитоплазматические показатели гепатоцитов в условиях моделирования МЭБС (Me(Q₁;Q₃))

Группа		Воздействие стрессорного фактора				
	Контроль без	Контроль со	Введение селанка в дозе:			
	стресса (n=10)	_	100 мкг/кг	300 мкг/кг	1000 мкг/кг	
Показатель		стрессом (n=10)	(n=10)	(n=10)	(n=10)	
	Показате	ели гепатоцитов	перипортальных	к отделов		
S гепатоцита,	274,4	262,7	272,7	298,4	271,1	
MKM ²	(230,1;320,6)	(217,9;315,3)	(232,1;305,5)	(254,7;336,6)*	(221,9;321,3)	
S ядра, мкм ²	50,1 (38,1;57,4)	52 (44,3;60,9)*	52,2 (44,4;59,1)	52,5 (42,8;60,6)	49,9 (36,5;57,6)*	
S цитоплазмы,	226,4	213,1	217,7	248,3	221,5	
мкм ²	(186,1;273,1)	(168,1;257,4)*	(185,3;251,4)	(204,6;285)*	(179,6;263,4)	
ОЛК	0,209	0,249	0,247	0,215	0,217	
	(0,172;0,256)	(0,207;0,294)*	(0,201;0,286)	(0,173;0,259)*	(0,167;0,276)*	
Процентное соотношение гепатоцитов центролобулярных отделов						
S гепатоцита,	299,2	302,6	297,5	309,8	210 (260:252.1)	
MKM ²	(248,9;354,5)	(247,2;360,4)	(256,4;344,7)	(264,1;377,2)	310 (260;353,1)	
S ядра, мкм ²	48,1 (37,7;61,5)	57,0 (47;66,9)*	53,5 (45,5;64,3)	60,3 (42,2;68,7)	58,8 (39,6;69,7)	
S цитоплазмы,	249,1	246,9	245,8	255,1	259	
MKM ²	(201;290)	(194,2;295,8)	(207,7;286,9)	(214,9;310,1)*	(217,4;299)*	
ОДК	0,196	0,234	0,224	0,215	0,209	
	(0,157;0,234)	(0,197;0,286)*	(0,181;0,280)	(0,176;0,258)*	(0,167;0,281)*	

Примечание: 1 — различия достоверны ($p \le 0.05$) по сравнению с контрольной группой крыс, не подвергавшихся стрессу; * — различия достоверны ($p \le 0.05$) по сравнению с контрольной группой крыс, подвергавшихся стрессу; S — средняя площадь, ЯЦО — ядерно-цитоплазматическое отношение.

Таким образом, влияния селанка в условиях МЭБС имели адаптогенный характер, проявляющийся антиоксидантным действием и усилением регенераторных процессов, с наибольшей выраженностью в дозе 300 мкг/кг.

Влияние селанка на морфофункциональное состояние гепатоцитов крыс в условиях острого иммобилизационного стресса (ОИС).

Как видно из таблицы 3, действие ОИС вызывало рост AcAT, что может свидетельствовать об усилении интеграции различных видов обмена, как адаптации к интенсивной физической нагрузке, сопровождающей ОИС (Ермолаева Е.Н., 2015; Bali A. and Jaggi A.S., 2015).

Таблица 3 – Влияние селанка на исследованные биохимические показатели в условиях моделирования ОИС (M±m)

Группа	Контроль	Воздействие стрессорного фактора					
	без стресса	Контроль со	Введение селанка в дозе:				
	(n=10)	стрессом	100 мкг/кг	300 мкг/кг	1000кг/кг		
Показатель	(11-10)	(n=10)	(n=10)	(n=10)	(n=10)		
	По	казатели сыворо	тки крови	•			
АсАТ, Ед/л	116,8±3,8	171,5±16,7 ¹	154,7±9,5	134,4±6,9*	131,1±6,7*		
Общий белок, г/л	60,1±0,9	55,6±1,1 ¹	60,4±0,8*	56,3±1,0	61,3±1,3*		
Мочевина, моль/л	3,2±0,2	3,2±0,2	3,3±0,3	3,3±0,2	4,2±0,3*		
Показатели гомогенизата печени							
МДА, мкмоль/мл	1,8±0,1	2,3±0,1 ¹	1,2±0,1*	1,8±0,1*	2,4±0,2		
СОД, усл. ед.	3,1±0,1	$3,5\pm0,2^{1}$	3,0±0,1*	3,1±0,1*	4,0±0,2		
Каталаза, мккат/л	2,2±0,1	2,5±0,1 ¹	2,1±0,1*	2,1±0,0*	2,2±0,1*		
OAA, %	23,9±0,4	22,2±0,31	23,2±0,3*	23,6±0,2*	26,7±0,4*		

Примечание: 1 – различия достоверны ($p \le 0.05$) по сравнению с контрольной группой крыс, не подвергавшихся стрессу; * – различия достоверны ($p \le 0.05$) по сравнению с контрольной группой крыс, подвергавшихся стрессу.

Действие ОИС сопровождалось ростом МДА и активности антиоксидантных ферментов. Снижение ОАА говорит о развитии оксидативного стресса. Нарушение протеинсинтетической функции проявлялось снижением уровня общего белка сыворотки и числа одноядрышковых гепатоцитов, что может объясняться дезорганизацией ядрышек при оксидативном стрессе, уменьшением их общей площади и транскрипторных возможностей клетки (Чучкова Н.Н. и др., 2016; Boulon S. et al., 2010).

Введение селанка в дозах 300 и 1000 мкг/кг вызвало снижение AcAT в сыворотке, что может свидетельствовать об уменьшении метаболической нагрузки на ткани печени. Антиоксидантные эффекты селанка в условиях ОИС проявлялись коррекцией показателей оксидативного статуса

печени до уровня нестрессированных животных в дозах 100 и 300 мкг/кг. Использование пептида в дозе 1000 мкг/кг снижало активность СОД и повышало ООА. Улучшение протеинсинтетической функции гепатоцитов наблюдалось при введении селанка в дозах 100 мкг/кг и 1000 мкг/кг и проявлялось ростом уровня общего белка сыворотки и числа одноядрышковых гепатоцитов во всех отделах дольки.

Таблица 4 – Влияние селанка на кариоцитоплазматические показатели гепатоцитов в условиях моделирования ОИС (Me(Q1;Q3))

Группа		Воздействие стрессорного фактора					
	Контроль без	Контроль со Введение селанка в дозе:					
	стресса (n=10)	стрессом (n=10)	100 мкг/кг	300 мкг/кг	1000 мкг/кг		
Показатель			(n=10)	(n=10)	(n=10)		
	Показ	атели гепатоцито	в перипортальны	ых отделов	l		
S гепатоцита,	325,6	317,3	305,5	335,6	299,4		
мкм ²	(283;383,3)	$(270,5;367,1)^1$	(272,8;344)	(288,9;392,8) *	(260,7;353,1)		
S ядра, мкм ²	51 (44,3;58,8)	57,4 (50,6;64,9) ¹	58 (48,4;65,6)	55 (46,9;64,8)	54,9 (46,9;62,9)*		
S цитоплазмы,	276,4	257,0	247,2	279	248,4		
мкм ²	(238,9;329,7)	$(212,7;307,2)^1$	(218,7;285,1)	(233,3;336,2) *	(209,5;301)		
ОДК	0,182	0,223	0,225	0,196	0,221		
	(0,149;0,225)	$(0,181;0,268)^1$	(0,193;0,265)	(0,147;0,253)*	(0,176;0,259)		
	Показатели гепатоцитов центролобулярных отделов						
S гепатоцита,	337,9	340,7	324,9	376,3	307,9		
мкм ²	(288,6;391,4)	(295,6;397)	(271,4;385,8)*	(321,7;428,4)*	(262,4;361,5)*		
S ядра, мкм ²	60,2 (52,3;69,2)	62,3 (52,1;68,6)	62 (48,6;69,8)	64,6 (54,4;71,9)	56,2 (46,7;64,2)*		
S цитоплазмы,	274,8	281,5	265,5	313,5	254,2		
мкм ²	(232,1;326,8)	(239,7;339,7)	(217,7;317) *	(259,2;368,7)*	(209,2;297)*		
ОДК	0,219	0,215	0,231	0,205	0,227		
	(0,187;0,27)	(0,180;0,259)	(0,192;0,278)*	(0,164;0,249)*	(0,199;0,270)*		

Примечание: 1 – различия достоверны ($p \le 0.05$) по сравнению с контрольной группой крыс, не подвергавшихся стрессу; * – различия достоверны ($p \le 0.05$) по сравнению с контрольной группой крыс, подвергавшихся стрессу; S – средняя площадь, ЯЦО – ядерно-цитоплазматическое отношение.

Действие ОИС вызывало развитие воспалительной инфильтрации и фокальных некрозов, выраженной зернистости цитоплазмы гепатоцитов в ПО и сдвигами их кариоцитоплазматических показателей. (таблица 4): отмечалось снижение площадей клеток и цитоплазмы на фоне роста площади ядер и ЯЦО. Стрессиндуцированная активация транскрипции сопровождалась ростом площадей ядер, а отсутствие согласованного увеличения площади цитоплазмы, вызванное энергетическим дефицитом при стрессе, вызвало рост ЯЦО.

Применение селанка во всех использованных дозах вело к снижению выраженности зернистости цитоплазмы гепатоцитов, уменьшению числа некротизированных клеток и воспалительной инфильтрации. При этом наиболее выраженный эффект наблюдался при введении пептида в дозе 1000 мкг/кг, однако при этом сохранялась лимфогистиоцитарная инфильтрация.

Применение селанка в дозе 300 мкг/кг корригировало стрессидуцированные изменения гепатоцитов в ПО. При этом в ЦО также наблюдался рост площади гепатоцитов и цитоплазмы, снижение ЯЦО и уменьшение числа многоядерных гепатоцитов, что свидетельствует о снижении интенсивности катаболических процессов в печени, увеличении ее энергетических резервов и активации деления многоядерных клеток.

Введение пептида в дозе 1000 мкг/кг вело к уменьшению площади ядер гепатоцитов в обоих отделах, при этом в ЦО также наблюдалось снижение площадей клеток и цитоплазмы на фоне роста ЯЦО. Сходные изменения гепатоцитов ЦО наблюдались при введении селанка в дозе 100 мкг/кг и могут свидетельствовать об активации редукционного митотического деления с формированием анеуплоидных гепатоцитов, как процесса адаптации к стрессорному воздействию (Duncan W. et al., 2010).

ОИС характеризуется низким числом корреляционных связей между исследованными параметрами, что свидетельствует о быстром наступлении адаптации к данному виду стресса (Herman J.P. et al., 2016; Bali A. and Jaggi A.S., 2015). Применение пептида во всех дозах не меняло число связей, однако вело к увеличению их силы и изменению характера, что говорит о смене стратегии адаптации. Таким образом, в условиях ОИС селанк оказывает адаптогенное влияние в отношении патологических и компенсаторных механизмов стрессорной реакции.

Влияние селанка на морфофункциональное состояние гепатоцитов крыс в условиях многократного иммобилизационного стресса (МИС).

Действие МИС сопровождалось изменением меньшего числа исследованных параметров по сравнению с ОИС, однако наблюдаемые сдвиги были более выражены (таблица 5).

Таблица 5 – Влияние селанка на исследованные биохимические показатели в условиях моделирования МИС (M±m)

Группа	Контроль	Воздействие стрессорного фактора				
	без стресса	Контроль со	Введение селанка в дозе:			
	(n=10)	стрессом	100 мкг/кг	300 мкг/кг	1000мкг/кг	
Показатель	(n=10)	(n=10)	(n=10)	(n=10)	(n=10)	
Показатели сыворотки крови						
АсАТ, Ед/л	132,6±6,6	$210,3\pm10,0^1$	161,7±10,5*	176,6±12,9*	174,8±7,1*	
Показатели гомогенизата печени						
МДА, мкмоль/мл	2,5±0,3	$3,6\pm0,4^{1}$	2,6±0,2*	2,7±0,1*	2,5±0,2*	
СОД, усл. ед.	2,4±0,1	$2,9\pm0,2^{1}$	2,4±0,1*	2,4±0,1*	2,3±0,1*	

Примечание: 1 — различия достоверны ($p \le 0.05$) по сравнению с контрольной группой крыс, не подвергавшихся стрессу; * — различия достоверны ($p \le 0.05$) по сравнению с контрольной группой крыс, подвергавшихся стрессу.

Так, наблюдалось увеличение содержания АсАТ сыворотки, уровня МДА и активности СОД в гомеогенате печени. Изолированный рост АсАТ может объясняться оксидативным повреждением мышечной ткани при дистрофии, вызванной иммобилизацией (Zhu Y. et al., 2015; Shibaguchi T. et al., 2016). Отсутствие роста активности каталазы на фоне роста МДА и активности СОД может объясняться диссоциацией активирующих каталазу киназ при высоких концентрациях АФК (Rhee S. G. et al., 2005). Селанк во всех использованных дозах способствовал коррекции стрессиндуцированных сдвигов биохимических показателей с наибольшей выраженностью эффектов в дозе 1000 мкг/кг.

МИС вел к развитию выраженной вакуолизации и зернистости цитоплазмы гепатоцитов, более выраженному в ПО. Применение селанка оказывало дозозависимое корригирующее влияние на стрессиндуцированные изменения цитоплазмы гепатоцитов. Выраженность эффектов пептида возрастала при увеличении дозы.

Отсутствие существенных изменений морфометрических параметров гепатоцитов (таблица 6) свидетельствует о развитии адаптации при данном типе стрессорного воздействия (Herman J.P. et al., 2016; Bali A. and Jaggi A.S., 2015).

Таблица 6 – Влияние селанка на кариоцитоплазматические показатели гепатоцитов в условиях моделирования МИС (Me(Q1;Q3))

Группа		Воздействие стрессорного фактора						
	Контроль без	Контроль со Введение селанка в дозе:						
	стресса (n=10)	стрессом	100 мкг/кг	300 мкг/кг	1000 мкг/кг			
Показатель		(n=10)	(n=10)	(n=10)	(n=10)			
	Показа	тели гепатоцит	ов перипортальнь	іх отделов				
S гепатоцита,	303,7	311	297,6	280	252,8			
mkm ²	(256,6;346,9)	(261,2;368,4)	(245,6;334,1)*	(244,1;321,2)*	(212,1;309,5)*			
S ядра, мкм ²	52,7	52,7	53,9	56,7	56,3			
э ядра, мкм	(46,6;58,1)	(43,6;64,5)	(48,5;59,6)*	(50,6;63,1)*	(49,8;63,9)*			
S цитоплазмы,	252	256,3	239,8	220,5	201,7			
мкм ²	(204,5;297,5)	(224;318,2)	(197,8;275,9)*	(188,2;260,5)*	(158,5;245,3)*			
ЯЦО	0,205	0,202	0,227	0,253	0,276			
	(0,174;0,243)	(0,161;0,247)	(0,189;0,265)*	(0,209;0,298)*	(0,223;0,328)*			
	Показатели гепатоцитов центролобулярных отделов							
S гепатоцита,	362,6	363,4	292,7	306,4	260,3			
MKM ²	(281,2;418,5)	(311,3;441,6)	(258,2;330,8)*	(262,6;356)*	(221,2;317)*			
S ядра, мкм ²	60,5	65,1	54,2	65,7	61,3			
	(51,1;68)	(52,9;73,2)	(49,3;61,9)*	(57,1;72)	(53,5;68,8)			
S цитоплазмы,	298,4	304,3	240,7	238,8	201,6			
мкм ²	(233,7;348,8)	(252,4;373,5)	(204,1;276,8)*	(202,7;283,8)*	(166,1;250,6)*			
ОДК	0,203	0,209	0,228	0,273	0,286			
ЯЦО	(0,170;0,255)	(0,166;0,248)	(0,188;0,278)*	(0,220;0,306)*	(0,246;0,348)*			

Примечание: 1 – различия достоверны ($p \le 0.05$) по сравнению с контрольной группой крыс, не подвергавшихся стрессу; * – различия достоверны ($p \le 0.05$) по сравнению с контрольной группой крыс, подвергавшихся стрессу; S – средняя площадь, ЯЦО – ядерно-цитоплазматическое отношение.

Введение всех использованных доз пептида сопровождалось сходными изменениями морфометрических показателей гепатоцитов с наибольшей выраженностью эффектов в дозе 1000 мкг/кг. При этом наблюдались зональные различия в изменениях площадей ядер. Так, у гепатоцитов в ПО наблюдался рост площади ядер и ЯЦО, уменьшение площади клетки и цитоплазмы на

фоне увеличения числа многоядрышковых клеток. Данные изменения могут свидетельствовать об активации репликации, митотических процессов и дезинтеграции ядрышек перед клеточным делением (Boulon S. et al., 2010; Рябинин В.Е. и др., 2012). Применение селанка в дозе 1000 мкг/кг также сопровождалось снижением числа многоядерных клеток, что также свидетельствует об активации деления данного пула гепатоцитов.

Изменения морфометрических показателей гепатоцитов в ЦО при введении селанка существенно отличались от таковых в ПО. Так, уменьшение площадей гепатоцитов и их цитоплазмы на фоне роста ЯЦО не сопровождалось ростом площади ядра, свойственным нормальному митотическому делению, что характерно для редукционного деления полиплоидных клеток и свидетельствует о зональных различиях адаптационных стратегий гепатоцитов. О смене адаптационной стратегии гепатоцитов свидетельствует и увеличение разнообразия корреляционных связей между исследованными показателями.

На основании полученных данных можно заключить, что введение селанка в условиях различных видов стресса оказывало гепатопротекторное адаптогенное влияние на морфофункциональное состояние гепатоцитов в виде антиоксидантных эффектов, нормализации регенераторных и метаболических процессов.

ВЫВОДЫ

- 1. Селанк оказывает плейотропное гепатопротекторное влияние на морфофункциональное состояние гепатоцитов крыс в условиях стресса различной модальности и продолжительности за счет изменения активности перекисного окисления, регенеративных процессов и синтетической функции гепатоцитов. Выраженность и направленность эффектов пептида зависит от используемой дозы, модальности и продолжительности стрессорного воздействия.
- 2. Острый эмоционально-болевой стресс вызывает напряжение адаптационных механизмов гепатоцитов, многократное эмоционально-болевое воздействие их истощение. Селанк в дозах 100, 300 и 1000 мкг/кг оказывает адаптогенное влияние на морфофункциональное состояние гепатоцитов с наибольшим эффектом в условиях ОЭБС в дозе 100 мкг/кг, при МЭБС в дозе 300 мкг/кг.
- 3. В условиях острого и многократного иммобилизационного стресса селанк во всех использованных дозах оказывает адаптогенное воздействие на морфофункциональное состояние гепатоцитов. При ОИС селанк в дозе 300 мкг/кг усиливает гипертрофию гепатоцитов, в дозах 100 и 1000 мкг/кг корригирует оксидативные процессы, улучшает синтетическую функцию гепатоцитов.

В условиях МИС наибольшие адаптогенные эффекты селанка наблюдаются в дозе 1000 мкг/кг в виде активации пролиферации гепатоцитов.

- 4. Характер корреляционных взаимосвязей исследованных показателей зависит от модальности и длительности стрессорного воздействия. Эмоционально-болевое воздействие характеризуется большим числом связей по сравнению с иммобилизацией. При многократном воздействии по сравнению с острым воздействием формируется большее число однотипных связей между оксидативными и морфологическими параметрами и ослабевают корреляции с биохимическим показателями сыворотки.
- 5. Корреляционные взаимоотношения между функциональными и морфологическими характеристиками гепатоцитов после введения селанка свидетельствуют об адаптогенном и стресслимитирующем характере эффектов пептида.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- 1. При использовании селанка у больных со стрессорным воздействием следует учитывать гепатотропные эффекты препарата. Рекомендовать исследование гепатопротекторных эффектов селанка в клинической практике.
- 2. Использовать в учебном процессе медицинских и биологических вузов данные об эффектах селанка как пример биологической полифункциональности регуляторных пептидов, их роли в развитии адаптивных реакций организма и плейотропности фармакологических эффектов препаратов, созданных на их основе.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

- 1. Effect of Selank on Functional State of Rat Liver under Conditions of Restraint Stress/ **E. V. Fomenko**, I. I. Bobyntsev, A. A. Krykov, A. V. Ivanov, L. A. Andreeva, N. F. Myasoedov // **Bulletin of Experimental Biology and Medicine**. 2017. Vol. 163, N 4. P. 415-418.
- 2. **Фоменко, Е.В.** Гепатопротекторные эффекты селанка при остром иммобилизационном стрессе / Е.В. Фоменко, А.Е. Белых, Н.К. Гарбелотто // Павловские чтения: сборник материалов Всероссийской научно-практической конференции, посвящен. 80-летию кафедр фармакологии и патофизиологии КГМУ / КГМУ; под ред. П.В. Ткаченко. Курск, 2017. С. 57-60.
- 3. Влияние селанка на морфологическое состояние гепатоцитов крыс при остром иммобилизационном стрессе / **Е.В. Фоменко**, А.В. Иванов, И.И. Бобынцев, А.Е. Белых, Н.К. Гарбе-

- лотто, Л.А. Андреева, Н.Ф. Мясоедов // **Курский научно-практический вестник «Человек и его здоровье»**. -2017. N 4. C. 108-114.
- 4. **Фоменко, Е.В.** Кариоцитоплазматические изменения гепатоцитов при остром иммобилизационном стрессе и их коррекция селанком / Е.В. Фоменко, А.Е. Белых, Н.К. Гарбелотто // Инновации в медицине: сборник материалов восьмой международной дистанционной научной конференции, посвященной 82-летию Курского государственного медицинского университета / КГМУ, Общероссийская общественная организация «Российский союз молодых ученых»; под ред. В.А. Лазаренко, П.В. Ткаченко. Курск, 2017. С. 156-159.
- 5. **Фоменко, Е.В.** Гепатопротекторное действие селанка в условиях хронического иммобилизационного стресса / Е.В. Фоменко, А.Е. Белых, Н.К. Гарбелотто // Актуальные проблемы клинической и экспериментальной патологии: материалы Межрегиональной научной конференции студентов, врачей, ученых и преподавателей вузов России (Рязань, 27 дек. 2017 г.) / под ред. д.м.н., проф. Ю.Ю. Бяловского, д.м.н., проф. В.В. Давыдова. Рязань: УИТТиОП РязГМУ, 2017. С. 143-148.
- 6. Морфологическое состояние гепатоцитов крыс при остром эмоционально-болевом стрессе на фоне применения селанка / **Е.В. Фоменко**, И.И. Бобынцев, А.В. Иванов, А.Е. Белых, Л.А. Андреева, Н.Ф. Мясоедов // **Курский научно-практический вестник «Человек и его здоровье».** − 2018. − № 3. − С. 51-57.
- 7. Гепатопротекторное действие селанка при иммобилизационном стрессе у крыс / А.А. Крюков, **Е.В. Фоменко**, И.И. Бобынцев, А.В. Иванов // Университетская наука: взгляд в будущее: сборник научных трудов по материалам Международной научной конференции, посвященной 83-летию Курского государственного медицинского университета (2 фев. 2018 г.): в 2 т. / под ред. ректора КГМУ, заслуженного врача РФ, проф., д.м.н. В.А. Лазаренко. Курск: ФГБОУ ВО КГМУ Минздрава России, 2018. Т. 1. С. 48-52.
- 8. **Фоменко, Е.В.** Влияние селанка на морфофункциональное состояние гепатоцитов при остром иммобилизационном стрессе / Е.В. Фоменко, А.Е. Белых, Н.К. Гарбелотто // Университетская наука: взгляд в будущее: сборник научных трудов по материалам Международной научной конференции, посвященной 83-летию Курского государственного медицинского университета (2 фев. 2018 г.): в 2 т. / под ред. ректора КГМУ, заслуженного врача РФ, проф., д.м.н. В.А. Лазаренко. Курск: ФГБОУ ВО КГМУ Минздрава России, 2018. Т. 1. С. 106-110.

- 9. Влияние селанка на функциональное состояние гепатоцитов крыс при эмоционально-болевом стрессе / **Е.В. Фоменко**, А.В. Иванов, И.И. Бобынцев, А.Е. Белых, Л.А. Андреева, Н.Ф. Мясоедов // **Морфология**. – 2019. – T.155, N 1. – C. 18-23.
- 10. Effect of Selank on Morphological Parameters of Rat Liver in Chronic Foot-Shock Stress/ **E. V. Fomenko**, I. I. Bobyntsev, A. V. Ivanov, A. E. Belykh, L. A. Andreeva, N. F. Myasoedov // **Bulletin of Experimental Biology and Medicine**. 2019. Vol. 167, N 2. P. 293-296.
- 11. Влияние селанка на функциональное состояние гепатоцитов крыс при эмоционально-болевом стрессе / И.И. Бобынцев, **Е.В. Фоменко**, А.А. Крюков, А.В. Иванов, Л.А. Андреева, Н.Ф. Мясоедов // Экспериментальная и клиническая фармакология. 2019. Т. 82, № 2. С. 11-15.
- 12. **Патент 2582963** РФ, МПК А 61 К 38/08, А 61 Р 1/16. Применение пептида Thr-Lys-Pro-Arg-Pro-Gly-Pro (селанк) для гепатопротекторного воздействия при остром иммобилизационном стрессе / **Е.В Фоменко**, А.А. Крюков, И.И. Бобынцев, А.В. Иванов, Н.М. Шишков. − № 2015115845/15; заявлено 27.04.15; опубл. 27.04.16, Бюл. № 12. 7 с.
- 13. Патент 2629832 РФ, МПК А 61 К 38/08, А 61 Р 1/16. Применение пептида Thr-Lys-Pro-Arg-Pro-Gly-Pro (селанка) для гепатопротекторного воздействия при хроническом эмоционально-болевом стрессе / **Е.В. Фоменко**, А.А. Крюков, И.И. Бобынцев, А.В. Иванов, Л.А. Андреева, Н.Ф. Мясоедов. № 2016144616; заявлено 14.11.16; опубл. 04.09.17, Бюл. № 25. 7 с.

СПИСОК СОКРАЩЕНИЙ

АлАТ – аланинаминотрансфераза

АсАТ – аспартатаминотрансфераза

АТФ – аденозинтрифосфат

АФК – активные формы кислорода

ГКС - глюкокортикостероидные гормоны

ДНК – дезоксирибонуклеиновая кислота

ЛПС – липополисахариды

МДА – малоновый диальдегид

ОАА – общая антиокислительная активность

ОИС – острый иммобилизационный стресс

ОЭБС – острый эмоционально-болевой стресс

ПО – перипортальные отделы печеночной дольки

ПОЛ – продукты окисления липидов

СОД – супероксиддисмутаза

СРО – свободнорадикальное окисление

МИС – многократный иммобилизационный стресс

МЭБС – многократный эмоционально-болевой стресс

ЦО – центролобулярные отделы печеночной дольки

ЯЦО – ядерно-цитоплазматическое отношение

Н₂О₂ – перекись водорода

IgG – иммуноглобулин G