ЛУКИНА МАРИЯ ВЛАДИМИРОВНА

ФАРМАКОЭПИДЕМИОЛОГИЧЕСКИЕ И ФАРМАКОКИНЕТИЧЕСКИЕ АСПЕКТЫ ПРИМЕНЕНИЯ ВАНКОМИЦИНА У БОЛЬНЫХ КАРДИОХИРУРГИЧЕСКОГО ПРОФИЛЯ С ОСТРЫМ ПОЧЕЧНЫМ ПОВРЕЖДЕНИЕМ

14.03.06 – Фармакология, клиническая фармакология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата медицинских наук

Работа выполнена в ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)

Научный руководитель:

Доктор медицинских наук, профессор

Морозова Татьяна Евгеньевна

Официальные оппоненты:

Жердев Владимир Павлович - доктор медицинских наук, профессор, заслуженный деятель наук РФ ФГБНУ "НИИ фармакологии имени В.В. Закусова", лаборатория фармакокинетики, заведующий лабораторией

Ушкалова Елена Андреевна - доктор медицинских наук, профессор ФГАОУ ВО «Российский университет дружбы народов», кафедра общей и клинической фармакологии, профессор кафедры

Ведущая организация: ФГБОУ ВО «Воронежский государственный медицинский университет им. Н.Н. Бурденко» Минздрава России

Защита диссертации состоится «___»____2019 года в ____ часов на заседании Диссертационного совета Д.208.040.13 при ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» Минздрава России (Сеченовский Университет) (119991, г. Москва, ул. Трубецкая, дом 8, стр.2)

С диссертацией можно ознакомиться в ЦНМБ ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» Минздрава России (Сеченовский Университет) (119034, г. Москва, Зубовский бульвар, дом 37/1) на сайте организации www.sechenov.ru)
Автореферат разослан « » 2019 года

Ученый секретарь диссертационного совета

Доктор медицинских наук, профессор

Дроздов Владимир Николаевич

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследвования. В настоящее время большое внимание уделяется проблеме острого почечного повреждения (ОПП) у пациентов хирургического профиля, развитие которого ассоциировано с ростом неблагоприятных побочных реакций (НПР), в т.ч. на антибактериальные препараты (АБП), продлением сроков госпитализации и увеличением летальности. Согласно рекомендациям Kidney Disease: Improving Global Outcomes (KDIGO) (Kellum J.A. и др., 2012; Chertow G.M. и др., 2005) негативное влияние на эффективность и безопасность проводимой терапииимеют не только тяжелые нарушения функции почек, но и умеренные, в том числе лекарственно-индуцированные повреждения почек (Harris D.G. и др., 2014; Ricci Z., Cruz D.N., 2011).Однако в настоящее время в нашей стране отсутствуют точные статистические данные о частоте встречаемости острых нарушений выделительной функции почек у пациентов хирургического профиля, а в рутинной практике далеко не всегда выявляются острые нарушения функции почек.

Для больных хирургического профиля с ОПП, число которых неуклонно растет в последнее время, особое значение приобретает проблема рационального выбора и с узким терапевтическим диапазоном (Смирнов А.В. и др., дозирования АБП 2012; Antunes P.E. и др., 2004). Ряд исследований показал, что даже незначительное нарушение выделительной функции почек приводит к изменению параметров фармакокинетики (ФК) и фармакодинамики (ФД) большинства АБП (Claus B.O.M. и др., 2013; Atkinson A.J., Umans J.G., 2009; Cockcroft D.W., 1976; Fissell W.H., 2013). Изменение параметров ФК может приводить, с одной стороны, к повышению концентрации АБП и развитию нежелательных побочных реакций (НПР), с другой стороны, возможно снижение концентрации до субтерапевтических значений, что может приводить к уменьшению клинической эффективности и последующему росту антибиотикорезистентности (Michael C.A., Dominey-Howes D., Labbate M., 2014; Vincent J.L. идр., 2009; Страчунский Л.С. и др., 1997). Нерациональное использование АБП негативно влияет на основные общебольничные показатели, такие как длительность пребывания больного в стационаре, показатели общебольничной летальности, рост локальной антибиотикорезистентности, а также экономические затраты связанные с оказанием медицинской помощи (Савельев В.С. и др., 2012; Prospero E. и др., 2011; Яковлев С.В. и др., 2017).

Наиболее значимы колебания ФК параметров АБП с узким терапевтическим диапазоном, которые широко используют для лечения больных с жизнеугрожающими инфекционными осложнениями и для профилактики инфекционных осложнений после хирургического вмешательства. Одним из таких препаратов является гликопептидный антибиотик ванкомицин. Накопленные к настоящему моменту сведения о высокой индивидуальной вариабельности ФК параметров в различных когортах пациентов, неуклонный рост антибиотикорезистентности к ванкомицину требуют анализа накопившейся информации обновления существующих рекомендаций по проведению АБТ ванкомицином и мониторингу данной терапии (Раере Р.De.; Lodise T.P., 2013; Rybak M.J., 1986). Ограниченное количество исследований, изучающих рациональное применение АБП с оценкой параметров фармакокинетики препаратов с узким терапевтическим диапазоном у пациентов хирургического профиля с ОПП, диктует необходимость более глубоко изучения данной проблемы.

Степень разработанности проблемы. Ограничено количество исследований по изучению фармакоэпидемиологических особенностей применения АБТ у пациентов кардиохирургического профиля с острым почечным повреждением. Не изучена частота встречаемости, факторы риска ОПП у пациентов кардиохирургического профиля (Lau G. и др., 2015; Case J. и др., 2013; Смирнов А.В. и др., 2012). Не изучены особенности параметров ФК большинства АБП, включая ванкомицин, у пациентов с ОПП (Blot S. и др., 2014; deGatta M. M. F. и др., 2007). Существует необходимость совершенствования методик определения и прогнозирования параметров ФК и ФД, что позволит повысить эффективность и безопасность проводимой терапии (Lewis S. J., Mueller B. A., 2016; Blot S. и др., 2014)

Цель исследования

Совершенствование эффективности и безопасности применения ванкомицина у пациентов кардиохирургического профиля с острым почечным повреждением по данным фармакоэпидемиологического и фармакокинетического исследований (ФКИ).

Задачи исследования

1. Изучить частоту встречаемости, факторы риска развития острого почечного повреждения и влияние ОПП на общебольничные показатели (частоту инфекционных осложнений, длительность госпитализации, летальность).

- 2. Провести ретроспективный фармакоэпидемиологический анализприменения антибактериальных препаратов, в т.ч. ванкомицина, у пациентов кардиохирургического профиля.
- 3. Оценить параметрыфармакокинетики ванкомицина у больных кардиохирургического профиля с острым почечным повреждением методами высокоэффективной жидкостной хроматографии и математического моделирования.
- 4. Провести сравнительный анализ показателей фармакокинетики ванкомицина, полученных методами высокоэффективной жидкостной хроматографии и математического моделирования.
- 5. Рассчитать отношения параметров $\Pi\Phi K_{24}/M\Pi K$ ванкомицина при различных значениях МПК для *Methicillin-resistantStaphylococcusaureus (MRSA)*.

Научная новизна. Впервые в нашей стране было проведено комплексное изучение частоты встречаемости и факторов риска развития ОПП у пациентов кардиохирургического профиля, структуры назначения АБП в рамках ПАП и АБТ инфекционных осложнений.

Доказана высокая частота встречаемости ОПП у пациентов после кардиохирургических вмешательств, наличие которого негативно влияет на общебольничные показатели. Были выявлены основные факторы риска развития ОПП.

Впервые доказано, что у пациентов кардиохирургического профиля с нарушением функции почек в раннем послеоперационном периоде имеет место высокая межиндивидуальная вариабельность параметров ФК ванкомицина.

Впервые доказано, что использование методаматематического моделирования ФК параметров ванкомицина у пациентов с ОПП легкой и умеренной степени имеет существенные ограничения. Было доказано, что в данной группе пациентов необходимо использованиефармакокинетических исследований на основе высокоэффективной жидкостной хроматографии с целью определения ФК параметров ванкомицина для оценки эффективности и безопасности проводимой АБТ. Доказано, что стандартные режимы дозирования ванкомицина не позволяют достичь целевых ФК параметров ванкомицина.Также результаты фармакокинетического исследования показали, что использование различных методик расчета и прогнозирования значений клиренса ванкомицина (Cl_{van}) при ОПП является необоснованным подходом, т.к. высок риск ошибки.

Теоретическая и практическая значимость работы. Выявлены основные предикторы развития ОПП у пациентов после кардиохирургических вмешательств и показано влияние ОПП на основные общебольничные показатели. Были подтверждены данные о высокой вариабельности параметров ФК ванкомицина, полученных различными методами, особенно в группе пациентов с ОПП. Различия фактических значений параметров ФК и полученных методом математического моделирования свидетельствуют о необходимости обязательного применения ФКИ у пациентов с ОПП в послеоперационном периоде.

Для пациентов кардиохирургического профиля с ОПП для оценки параметров ФК ванкомицина следует использовать метод терапевтического лекарственного мониторинга (с определением концентрации ванкомицина методом высокоэффективной жидкостной хроматографии).

Методология и методы исследования

- 1. Ретроспективный фармакоэпидемиологический анализ частоты встречаемости, факторы риска развития ОПП в послеоперационном периоде и структуры назначаемых АБП в рамках ПАП и АБТ инфекционных осложнений.
- 2. Проспективное изучение особенностей параметров ФК ванкомицина у пациентов кардиохирургического профиля с ОПП.
- 3. Определение фармакокинетических параметров проводили методами высокоэффективной жидкостной хроматографии с масс-селективным детекторами и квадрупольным анализатором. Данный метод является предпочтительным для определения лекарственных веществ в плазме крови человека, так как обладает высокой чувствительностью и специфичностью.
- 4. Математическое моделирование параметров ФК ванкомицина проводили на основе однокомпартментной модели, с последующим сравнение полученных результатов.

Основные положения, выносимые на защиту

1. У пациентов кардиохирургического профиля имеет место высокая частота развития острого почечного повреждения различной степени тяжести.

- 2. Для пациентов кардиохирургического профиля с острым почечным повреждением характерна высокая частота назначения ванкомицина в монотерапии и в комбинациях с другими АБП, для лечения инфекционных осложнений в послеоперационном периоде.
- 3. Для пациентовкардиохирургического профиля характерна высокая частота межиндивидуальных различий параметров ФК ванкомицина. Стандартные режимы дозирования ванкомицина не позволяют достичь целевых ФК параметров ванкомицина.
- 4. Применение ФКИ для оценки параметров ФК ванкомицина нельзя заменить математическим моделированием на основе однокомпартментной модели в группе пациентов кардиохирургического профиля с ОПП легкой и умеренной степени тяжести.

Степень достоверности и апробация результатов. Достоверность полученных результатов определяется дизайном исследования, с формированием групп сравнения, достаточным числом наблюдений. Полученные данные обработаны с использованием современных методов статистического анализа. Выводы и практические рекомендации логично вытекают из полученных результатов и соответствуют цели и задачам исследования.

Результаты исследования были доложены и обсуждены на X международном научном конгрессе «Рациональная фармакотерапия» (г. Санкт-Петербург, 2015г.); 2-ой Ежегодной московской городской конференции «Вотчаловские чтения» (г. Москва, 2015г.); XI международном научном конгрессе «Рациональная фармакотерапия» (г. Санкт-Петербург, 2016г.); XIII международном научном конгрессе «Рациональная фармакотерапия» (г. Санкт-Петербург, 2018г.); постерный доклад на 13 конгрессе Европейской ассоциации клинических фармакологов и терапевтов (ЕАСРТ) (г. Прага, 2017г.); на XXIV Российском национальным конгрессе "Человек и лекарство" (г. Москва, 2017г.).

Апробация работы состоялась 12 декабря 2018 г. на совместной научной конференции кафедры клинической фармакологии и пропедевтики внутренних болезней лечебного факультета и кафедры общей врачебной практики ИПО ФГАОУ ВО Первый МГМУ им. И.М.Сеченова Минздрава России (Сеченовский Университет).

Личный вклад автора. Автор самостоятельно планировал исследование, осуществлял литературный поиск по теме НИР. Самостоятельно выполнены

ретроспективный и проспективный этапы исследования и последующий анализ полученных результатов.

Внедрение результатов в практику. Результаты исследования внедрены в лечебный процесс в УКБ № 1 и используются в учебном процессе по программам высшего профессионального образования (подготовка кадров высшей квалификации – ординатура и аспирантура); дополнительного профессионального образования на кафедре клинической фармакологии и пропедевтики внутренних болезней лечебного факультета ФГАОУ ВО Первого МГМУ им. И. М. Сеченова Минздрава России (Сеченовский Университет).

Соответствие паспорту специальности. Работа соответствует пунктам 4,6,10,13,14,16паспорта специальности 14.03.06-фармакология, клиническая фармакология (медицинские науки).

Публикации. По теме диссертации опубликовано 9 печатных работ, из них 4 статьи входят в перечень ведущих рецензируемых научных журналов и изданий, рекомендованных ВАК Минобрнауки России, 2 из которых, также индексируются в базе Scopus, 1 тезисы в зарубежном издании.

Объем и структура диссертации. Диссертация изложена на 129 страницах машинописного текста, иллюстрирована 26 рисунками, содержит 24 таблицы. Состоит из введения, обзора литературы, глав описания материалов и методов, собственных результатов и их обсуждения, выводов, практических рекомендаций. Бибилиографический указатель содержит 177 источников, их них 19 отечественных и 161 зарубежных.

СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Диссертационная работа выполнена накафедре клинической фармакологии и пропедевтики внутренних болезней на базеУниверситетской клинической больницы№1 ФГАОУ Первый МГМУ им. И.М. Сеченова Минздрава России. Дизайн исследования одобрен локальным комитетом по этике Первого МГМУ им. И.М. Сеченова МЗ РФ, протокол № 05-16 от 18.05.2016.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Ретроспективное исследование проводили методом сплошной выборки карт стационарных больных хирургических отделений (ф.003-у), находившихся на лечении в

УКБ №1 Первый МГМУ им. И.М. Сеченова в период с сентября 2015 г. по декабрь 2016 г. В исследование включены 576 историй болезни пациентов после кардиохирургических вмешательств, находившихся на стационарном лечении в период с июня по декабрь 2016 г. в возрасте от 18до 87 лет (ср. возраст 57.4 ± 14.5 года), мужчин - 347; женщин – 229. Характер оперативных вмешательств был следующим: маммарокоронарное шунтирование (МКШ) и аорто-коронарное шунтирование (АКШ) у 279 больных (48,4%), протезирование - у 92 (16,0%), сочетанное клапанов сердца АКШ/МКШ + протезирование клапанов сердца - у 66 (11,5%), протезирование аорты – у 87 (15,1%), в том числе в сочетании с каротидной эндартерэктомией (КЭАЭ) - у 16 (2,8%), аорто-бедренное шунтирование - у 36 (6,3%). Операции в условиях искусственного кровообращения (ИК) и фармакохолодовой кардиоплегии (ФХКП) проводились у 236 больных (54%).

В проспективное исследование включали пациентов кардиохирургического профиля в возрасте старше 18 лет с гнойно-септическими осложнениями в раннем послеоперационном периоде (до 7 суток) после оперативного вмешательства на сердце и магистральных сосудах, подписавших информированное добровольное согласие. Не включали пациентов, которым требовалась заместительная почечная терапия, с непереносимостью ванкомицина, при наличии абсолютных противопоказаний к применению ванкомицина согласно инструкции по медицинскому применению. Всего включен 61 пациент в возрасте от 31 до 82 лет (ср. возраст 60,59±12,23), муж. - 47 (77 %), жен.-14 (23%), разделенных на 2 группы: 1-я группа — пациенты с ОПП (n=35; 66,6%), в том числе 1 ст. - 20 (57,2%), 2 ст. - 15 (42,8%); 2-я группа (контрольная) - пациенты без ОПП (n=26;33,4%). Характер оперативного вмешательства - АКШ/МКШ у 19 чел. (31,1%); протезирование клапанов сердца - у 13 (21,3%), протезирование аорты - у 16 (26,2%), протезирование артерий нижних конечностей у 13 (21,3%).

Режим дозирования ванкомицина (Эдицин, ЗАО «Сандоз») определяли в соответствии с инструкцией по медицинскому применению. Пациентам с нарушением функции почек коррекция дозы проводилась под контролем содержания сывороточного креатинина путем увеличения интервалов между введениями или уменьшением разовой дозы препарата.

Эффективность проводимой АБТ оцевали по результатам общеклинических и лабораторно-инструментальных исследований, переносимость АБТ - по развитию НПР.

Методика проведения фармакокинетического исследования. Всем пациентам, включенным в исследование, проводили забор образцов крови для Φ КИ в соответствии рекомендациями по фармакокинетическому мониторингу ванкомицина (Rybak M.J. и др., 2009). Для определения равновесных концентраций C_{peak} (через 60 мин после окончания в/в инфузии) и C_{trough} (за 60 мин перед введением очередной дозы препарата) взятие образцов крови проводили через 48 часов от начала (1) и на момент завершения АБТ (2) (Натмеtt-Stabler C.A., Johns T., 1998).

образцов Подготовку проводили путем осаждения белков метанолом. определение Количественное проводили на высокоэффективном жидкостном Agilent 1260, хроматографе оснащенном градиентным насосом, дегазатором, автосамплером и тандемным масс-селективным детектором Agilent 6460 (Agilent Technologies, США). Хроматографическое разделение проводили на колонке Zorbax Eclipse Plus-C18 2.1*50 мм, 1.8 мкм с предколонкой Zorbax Eclipse Plus C18 12,5*2.1 мм 1.8 мкм.

На основании полученных равновесных значений C_{peak} и C_{trough} проводили расчет $\Pi \Phi K_{24}$, которую вычисляли с помощью уравнений динамики как сумму различных фаз («метод трапеций»)[DeRyke C. A., 2009]:

$$\Pi \Phi K_{24} = \frac{(Lintrap + Logtrap) * 24}{\tau};$$

Lintrap, площадь под фармакокинетической кривой линейной фазы инфузии рассчитывается по формуле:

$$Lintrap = \frac{(C_{trough} + C_{peak}) * T_{inf}}{2};$$

Где T_{inf} -продолжительность инфузии (часы).

Logtrap, площадь под «логарифмической» фазой элиминации, рассчитывается по формуле:

$$Logtrap = \frac{(c_{peak} - c_{trough}) * (\tau - T_{inf})}{ln \frac{c_{peak}}{c_{trough}}},$$

где τ – время между инфузиями (часы).

Методика проведения математического моделирования. Математическое моделирование проводили с использованием компьютерной программы R 4.3.0 [TeamR.C.R, 2014]. Расчитывали значения C_{peak} , C_{trough} и $\Pi\Phi K_{24}$ с использованием уравнений «динамики» для однокомпартментной модели через 48 часов от начала (1) и на момент завершения АБТ (2) по формулам BauerL.A., 2001:

$$C_{peak} = \frac{Dose*1 - e^{-T}inf^{*K}el}{T_{inf}*V_{d}*K_{el}*(1 - e^{-\tau*K}el)};$$

$$C_{trough} = C_{peak} * e^{-K_{el}*(\tau - T_{inf})};$$

где Dose — разовая доза ванкомицина (мг), T_{inf} —продолжительность инфузии (ч), τ — время между инфузиями (ч), V_d — кажущийся объем распределения (л/кг): $V_d = 0.7 * M$; где M — абсолютная масса тела пациента (кг), K_{el} - предсказанная константа элиминации(\mathbf{q}^{-1}).

Для расчета предсказанной константы элиминации применяли следующее уравнение [Matzke G. R. и др., 1984]:

 $K_{el} = 0.00083* {
m KK} + 0.0044;$ где KK— клиренс креатинина (мл/мин) Для расчета $\Pi\Phi {
m K}_{24}$ применяли «метод трапеции»:

$$\Pi \Phi K_{24} = \frac{(Lintrap + Logtrap) * 24}{\tau}.$$

Расчет клиренса ванкомицина на основе данных фармакокинетического исследования и различных математических формул. Для расчета клиренса ванкомицина, использовали следующие методы расчета:

1. По данным фармакокинетического исследования $Cl_{van} = K_{el} \cdot V_d \cdot 1000/60$, где V_d – кажущийся объем распределения (л/кг); K_{el} - константа элиминации рассчитанная на основании фактических равновесных пиковых и остаточных концентраций по данным фармакокинетического исследования по формуле:

$$K_{\rm el} = \frac{-ln(\frac{C_{peak}}{C_{trough}})}{\tau - T_{inf}};$$

где C_{peak} —пиковая концентрация по данных ВЭЖХ; C_{trough} - остаточная концентрация по данным ВЭЖХ; T_{inf} —продолжительность инфузии (часы); τ — время между инфузиями (часы).

2. Математические формулы для расчета Cl_{van}

Cl_{van}=50,75 *KK [DeRyke, Alexander, 2009];

Cl_{van}=10,79 *KK + 15,4[Moise-Broder P. A. et al., 2004]; Cl_{van}= K_{el}*V_d*1000/60 - «ClinCalc» [Matzke G. R. др., 1984].

Прогнозирование фармакокинетического/фармакодинамического отношения для ванкомицина у пациентов с инфекционными осложнениями, ассоциированными c Methicillin-resistant Staphylococcus (MRSA).aureus Минимальные подавляющие концентрации определяли только для возбудителей, выделенных при микробиологическом исследовании крови. Низкая частота выделения клинически-значимых возбудителей в крови и определение МПК не позволило в полной мере определитьи проанализировать отношение параметров ФК/ФД ванкомицина для различных возбудителей инфекционных осложнений. В связи с эти было проведено параметров ФК/ФД при различных значениях МПК для MRSA. прогнозирование $\Phi K/\Phi Д$ отношение рассчитывали как отношение $\Pi \Phi K_{24}$ к минимальной подавляющей концентрации (МПК) = 1мкг/мл для возбудителя - Methicillin-resistant Staphylococcus aureus (MRSA). Далее рассчитывали процентное соотношение пациентов, которым удалось достичь целевого уровня $\Pi\Phi K_{24}/M\Pi K > 400$ мкг/мл*ч при увеличении МПК до 1,5 и 2 мкг/мл при стандартном режиме дозирования.

Статистический анализ

Статистический анализ проводили с помощью пакета прикладный программ IBMSPSSStatistics 18.0.и R 3.4.0. Данные представлены в виде: средних величин — М, среднего квадратичного отклонения - SDдля нормально распределенных непрерывных величин; медианы (Ме) и интерквартильного размаха (IQR) для остальных случаев и частот категориальных переменных. Нормальность распределения проверяли с помощью теста Shapiro-Wilk. Достоверность различий частот определяли при помощи точного критерия Fisher. Достоверность различий среднего арифметического в группах определяли при помощи дисперсионного анализа ANOVA. Помимо дисперсионного анализа, использовали непараметрические методы, определяли достоверность различия средних рангов между двумя группами критерием U_test Mann Whitney-Wilcoxon, а между тремя и более группами критерием Kruskal — Wallis. Для анализа связи числовых показателей использовали ранговый коэффициент корреляции Спирмена. Различия считались статистически достоверными (статистически значимыми) при p<0.05.

РЕЗУЛЬТАТЫ

Анализ частоты встречаемости острого почечногоповреждения и фармакоэпидемиологические аспекты применения ванкомицина у пациентовкардиохиругического профиля

Ретроспективный анализ базы данных 576 историй болезней показал, что развитие ОПП имело место у 286 больных (49,6%), в том числе 1 ст. - у 166 больных (58,1%), 2 ст. - у 95 (33,2%), 3 ст. - у 25 (8,7%). 1 и 2 стадии ОПП чаще встречались у пациентов после операций на сердце (АКШ/МКШ), протезирования клапанов сердца (81,3% и 67,4%,соответственно), 3 стадия — у пациентов после протезирования аневризмы аорты (64%). При оценке факторов риска развития ОПП у пациентов после кардиохирургических вмешательств в послеоперационном периоде были выделены следующие группы: без ОПП (290;50,3%) - 0 группа; пациенты с 1 стадией ОПП 166 (58,1%) - группа 1, пациенты с 2 стадией ОПП 95 (33,2%)- группа 2 и пациенты с 3 стадией ОПП 25 (8,7%) - группа 3. Достоверность различий между группами проверяли с помощью критерия Kruskal-Wallis.

По данным анализа на частоту развития ОПП влияли:

- расчетные значения КК по Кокрофту Голту до операции (у пациентов с КК ниже 80 мл/мин чаще развивалась ОПП легкой степени тяжести, с КК ниже 60 мл/мин умеренная и тяжелая степень ОПП по AKIN (Kruskal-Wallis p<0,0001) (рис.1);
- длительность оперативного вмешательства (Kruskal-Wallis p<0,0001) (при длительности оперативного вмешательства 160-200 мин, отмечена более высокая частота развития ОПП 1 и 2 стадии, более 200 мин 3 стадия ОПП (p<0,0001) (рис.2);
- фракция выброса левого желудочка ниже 60% (чаще развивалась ОПП 2 и 3 стадии (Kruskal-Wallisp = 0.02541); ФВ ниже 60% имеет положительную корреляционную связь с тяжестью ОПП (r=0.543; p=0.0113) (рис. 3);
- интраоперационный объем кровопотери (при интраоперационном объеме кровопотери более 800 мл чаще развивалась 2 и 3 стадия ОПП (Kruskal-Wallis p=0,0001351) (рис. 4).

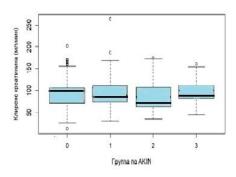


Рисунок 1. Расчетные значения клиренса креатинина по КокрофтуГолту у пациентов с ОПП (1,2,3) и без ОПП (0)

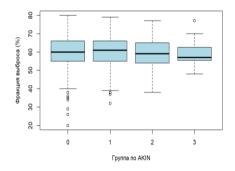


Рисунок 3. Значения фракции выброса у пациентов с ОПП (1,2,3) и без ОПП (0)

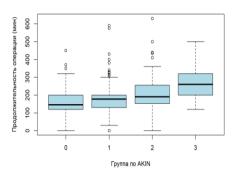


Рисунок 2. Продолжительность оперативного вмешательства у пациентов с ОПП (1,2,3) и без ОПП (0)

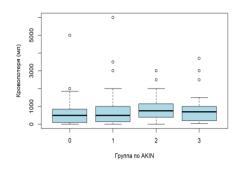
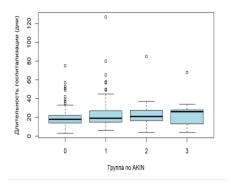



Рисунок 4. Сравнение интраоперационного объема кровопотери у пациентов с ОПП (1,2,3) и без ОПП (0)

По данным корреляционного анализа не выявлено связи между частотой ОПП и типом оперативного вмешательства (r=0,881; p=0,764); применением ИК (r=0,299; p=0,102); назначением НПВП (r=0,233; p=0,766), ИАПФ (r=0,566; p=0,190), петлевых диуретиков (r=0,403; p=0,091) и рентген-контрастных препаратов (r=0,556; p=0,322).

Был проведен анализ влияния ОПП на общебольничные показатели. В группе пациентов с ОПП отмечана увеличение продолжительности госпитализации у больных с ОПП $22,7\pm14,1$ против $18,7\pm8,8$ суток у больных без ОПП (Kruskal-Wallis p = 0,001376), при этом тяжесть ОПП не оказывала влияния на длительность госпитализации: 1 ст. $20,7\pm10,7$ суток; 2 стадия $20,1\pm14,7$ суток; 3 стадия $22,7\pm25,1$ суток соответственно (рис.5). У пациентов с ОПП 3 стадии была отмечена более высокая частота летального исхода 12 (2%) (Fisher's Exact Test p=0,0154), чем у пациентов с 1 стадий (3;0,5%), 2 стадий (6;1,04%) и без ОПП (1; 0,2%) (рис. 6).

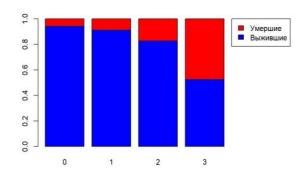


Рисунок 5. Длительность госпитализации в группах пациентов с различными стадиями ОПП (1,2,3) и без ОПП (0) в послеоперационном периоде

Рисунок 6. Частота летального исхода в зависимости от стадии острого почечного повреждения по AKIN

По данным корреляционного анализа на частоту развития ОПП не влияли: нерациональная длительность (r=0,119; p=0,977), дозы (r=0,139; p=0,547) и выбор схем ПАП (r=0,508; p=0,190). Назначение различных классов АБП, в том числе ванкомицина, не ассоциировано с повышением частоты ОПП после кардиохирургических вмешательств (p=0,566).

Частота инфекционных осложнений в послеоперационном периоде составила 15,6% (n=90), в том числе ИОХВ 50% (n=51); НП 34,4% (n=31); сепсис 7,7% (n=7), ИЭ 0,9% (n=1). По данным анализа фактором риска развития инфекционных осложнений в являлось ОПП (Fisher's Exact Test p<0,0001). Частота послеоперационном периоде развития инфекционных осложнений при ОПП 3 ст. составила 72%, 2 ст. - 36,8%, 1 ст. -7,2%, у больных без ОПП - 3,7%. Достоверно чаще при ОПП 2-3 ст. отмечено развитие нозокомиальной пневмонии (13 случаев) (Fisher's Exact Test p<0,0001) и ИОХВ (Fisher's Exact Test p= 0,0015) по сравнению с больными без ОПП и 1 стадией ОПП. В рамках эмпирической АБТ инфекционных осложнений препаратами первой линии являлись ванкомицин в монотерапии (n=44;48,8%) и комбинации с меропенемом или ИЗБЛ (n=23;21,1%), а также карбапенемы в монотерапии (n=14;14,4%) и в комбинации с АБП других классов (n=2; 2,2%). Длительность проводимой АБТ составила 6,1 \pm 7,2 суток. При определении суммарной частоты назначения отдельных АБП отмечена высокая частота назначения ванкомицина (67;54,4%). Соотношения назначения ванкомицина в группе больных с/без ОПП составило 39 (58,2%) и 28 (41,7%) соответственно. По данным корреляционного анализа назначение ванкомицина в рамках эмпирической АБТ

 $(r=-0,119;\ p=0,977)$ не имеет достоверной связи с частой и тяжестью ОПП после кардиохирургических вмешательств (Fisher's p=0,0129). Снижение функции почек, помимо фактора риска ОПП, имеет достоверную корреляцию с частотой развития НПР (p<0,0001). Наибольшее количество НПР было отмечено у пациентов с ОПП 3 стадии (n=14) Fisher's Exact Test p=0,008104. Таким образом, тяжесть ОПП увеличивает риск развития НПР у пациентов получающих АБТ в рамках терапии инфекционных осложнений

Параметры фармакокинетики ванкомицина, полученные методом ВЭЖХ и методом математического моделированияу пациентов кардиохирургического профиля с ОПП

Сравнительный анализ параметров ФК ванкомицина, полученных на основе измерения концентраций ванкомицина методом ВЭЖХ и по данным ММ, показал, что по данным ФКИ уровень C_{peak}^{-1} был выше значений ММ, через 48 часов от начала АБТ 35,6 [31,2-37,2] против 27,3 [24,2-32,2] мкг/мл (p=0,019), а на момент завершения АБТ достоверно мешьше 22,5 [18,6-30,7] против 34,8 [31,7-41,9] мкг/мл (p=0,002). Фактические значения равновестных C_{trough}^{-1} через 48 часов от начала терапии достоверно ниже значений полученных при ММ 11,32 [8,1-16,4] и 16,59 [14,03-24,8] мкг/мл соответственно (p=0,004). При этом на момент завершения терапии ванкомицином значения C_{trough}^{-2} по данным ФКИ и ММ достоверно не различаются между собой 12,59 [8,5-22,8] и 8,65 [5,9-12,06] мкг/мл соответственно (p=0,092). Фактические значения K_{el}^{-1} час-1, по данным ФКИ были выше рассчитанных значений (p<0,001). Для параметра ПФК24 достоверные различия между результатами ФКИ и ММ были получены лишь на момент завершения АБТ 564,04 [409,5-751,9] и 347,03 [267,43-479,99] мкг*ч/мл соответственно (p=0,011) (табл.1).

Была получена высокая степень взаимосвязи при проведении корреляционного анализа по Спирмену между значениями КК и Cl_{van} для различных методик расчета - DeRyke (p<0,0001), Pea (p<0,0001), Moise-Broder (p<0,0001), «ClinCalc» (p<0,0001). Полученные значения Cl_{van} расчитанного различными способами, были следующими: Cl_{van} DeRyke $46,47\pm15,6$ мл/мин, Cl_{van} Pea $45,34\pm9,9$ мл/мин, Cl_{van} Moise-Broder $64,34\pm16,46$ мл/мин, Cl_{van} «ClinCalc» $53,45\pm21,92$ мл/мин, Cl_{van} ФКИ $107,64\pm45,1$ мл/мин. При сравнении значений Cl_{van} группах с/без ОПП достоверно между собой различались

значения Cl_{van} для формул: DeRyke (40,92±15,67 и 57,58±8,11 мл/мин соответственно, p=0,037), Pea (41,79±10,03 и 52,45±5,19мл/мин соответственно, p=0,037), Moise-Broder (58,49±16,6 и 76,05±8,54 мл/мин соответственно, p=0,007). Фактические значения Cl_{van} по данным ФКИ на основе ВЭЖХ, выше в группе пациентов с ОПП, чем в группе без ОПП (119,28±48,31 и 84,37±27,63 мл/мин соответственно), однако различия не достоверны (p=0,156).

Значения Cl_{van} , полученные различными методами (DeRyke, Pea, Moise-Broder, «ClinCalc» и ФКИ) представлены в табл. 2. Как видно из представленных данных значения Cl_{van} достоверно не различаличалисьтолько для методов по DeRyke и Pea (p=0,259). Значения Cl_{van} для остальных меток расчета достоверно отличались друг от друга и результатов ФКИ. Полученные различия связаны с высоким процентом ошибки в расчетах для Cl_{van} , при использовании различных математических формулкак в группе с ОПП (43- 60%), так в группе без ОПП (35 - 49%).

Таблица 2. Достоверность различий средних значений между различными методами расчета Cl_{van}(по DeRyke, Pea, Moise-Broder, «ClinCalc» и ФКИ)

Clvan, мл/мин	DeRyke	Pea	Moise-Broder	«ClinCalc»	ФКИ
DeRyke	-	0,259	<0,0001	0,005	<0,0001
Pea	0,259	-	<0,0001	0,039	<0,0001
Moise-Broder	<0,0001	<0,0001	-	<0,0001	0,001
«ClinCalc»	0,005	0,039	<0,0001	ı	<0,0001
ФКИ	<0,0001	<0,0001	0,001	<0,0001	-

p-Wilcoxon

Таблица 1. Фармакокинетические параметры ванкомицина, полученные на основе ВЭЖХ и методом математического моделирования в группах больных с/без острого почечного повреждения

	ФКИ	MM	р	ФКИ (n=61)		P U_test	MM (n=61)		P U_test
ФК	(n=61)	(n=61)	Wilcoxon	Me[IQR]		Mann	Me[IQR]		Mann
параметры	Me[IQR]			ОПП+ (n=35) ОПП- (n=26)		Whitney	ΟΠΠ+ (n=35)	ОПП- (n=26)	Whitney
С _{реак} , мкг/мл	35,6 [31,2-37,2]	27,3 [24,2-32,2]	0,019	35,1 [30,9-37,8]	23,8 [21,3-31,4]	0,502	26,2 [15,8-27,2]	28,2 [26,6-32,8]	0,502
C _{peak} ² ,	22,5	34,8	0,002	35,6	23,8	,	26,23	34,8	,
МКГ/МЛ	[18,6-30,7] 11,32	[31,7-41,9] 16,59	,	[31,9-40,7] 9,6	[21,3-31,4] 12,08	0,263	[24,11-28,1] 16,2	[30,1-43,1]	0,263
C _{trough} ¹ ,	[8,1-16,4]	[14,03-24,8]	0,004	[6,9-15,0]	[8,8-18,27]	0,197	[14,2-19,7]	[13,24-18,04]	0,54
C _{trough} ² ,	12,59	8,65	0,092	15,7	12,59		8,3	10,14	
мкг/мл	[8,5-22,8]	[5,9-12,06]	0,092	[6,6-25,8]	[9,1-21,7]	0,776	[6,08-11,6]	[5,7-12,5]	0,765
K _{el} _ час ⁻¹	0,109	0,06	<0,0001	0,12	0,1		0,04	0,06	
	[0,08-0,15]	[0,04-0,072]	<0,0001	[0,1-0,14]	[0,06-0,131]	0,037	[0,04-0,07]	[0,06-0,077]	0,117
$K_{\rm el}^2$ _ час ⁻¹	0,08	0,08	0.274	0,06	0,11		0,08	0,09	
	[0,05-0,14]	[0,063-0,102]	0,274	[0,05-0,15]	[0,07-0,13]	0,412	[0,05-0,15]	[0,07-0,11]	0,709
$\Pi\Phi K_{24}^{-1}$,	484,08	459,72	0.715	465,7	530,8	0,263	462,8	458,38	0,709
мкг*ч/мл	[404,5-604,4]	[433,6-556,01]	0,715	[399,5-605,3]	[480,2-603,4]		[450,4-548,5]	[413,8-553,5]	
$\Pi\Phi K_{24}^{2}$,	564,04	347,03	0.011	551,2	564,04	0.765	345,4	386,8	0.502
мкг*ч/мл	[409,5-751,9]	[267,43-479,9]	0,011	[397,02-786,6]	[421,9-721,5]	0,765	[255,5-393,2]	[273,8-481,5]	0,502

Прогнозирование целевых параметров фармакокинетики/фармакодинамики ванкомицина

для Methicillin-resistant Staphylococcus aureus (MRSA)

Для оценки эффективности терапии ванкомицином, помимо определения равновесных C_{trough} был проведен расчет значений $\Pi\Phi K_{24}$ мкг*ч/мл и целевого фармакокинетического/фармакодинамического соотношения ($\Pi\Phi K_{24}/M\Pi K>400$). Результаты микробиологических исследований и данные центральной микробиологической лаборатории о значении $M\Pi K \le 1$ мкг/мл для возбудителя – MRSA.

Полученные значения ФК/ФД через 48 часов от начала и на момент завершения свидетельствуют о высоком уровне достижения целевых $\Pi\Phi K_{24}/M\Pi K>400$ в 100% случаев (табл.3. и табл.4). Исключение составляет группа пациентов, в которой значение равновесных С_{trough} не достигало 10 мкг/мл. В данной группе целевого отношения $\Pi\Phi K_{24}/M\Pi K > 400$ достигали лишь 55% пациентов через 48 часов от начала АБТ и 16% пациентов на момент завершения АБТ. Однако, данные ФК/ФЛ не значения соотношения имеликорреляции c «клинической» эффективностью проводимой АБТ.

Таблица 3. Соотношение фармакокинетических/фармакодинамических параметров ванкомицина для Methicillin-resistant Staphylococcus aureus (MRSA) через 48 часов от начала терапии

Значение	$\Pi\Phi K_{24}$, мкг $*$ ч/мл			ПФК ₂₄ /МПК>400			
C _{trough} , мкг/мл	M	Min	Max	МПК=1 мкг/мл (%)	МПК =1,5 мкг/мл (%)	МПК=2 мкг/мл (%)	
<10	401,9	365,6	484,0	55	0	0	
10-15	530,8	459,4	645,6	100	30	0	
15-20	603,4	549,4	605,2	100	70	0	
>20	780,6	676,4	884,7	100	100	50	

Таблица 4. Соотношение фармакокинетических/фармакодинамических параметров ванкомицина для Methicillin-resistant Staphylococcus aureus (MRSA) на момент завершения терапии

Значение	$\Pi\Phi K_{24}$, мкг * ч/мл			ПФК ₂₄ /МПК>400			
C _{trough} ,	M	Min	Max	МПК=1	МПК =1,5	МПК=2	
мкг/мл	IVI	171111	IVIAX	мкг/мл (%)	мкг/мл (%)	мкг/мл (%)	
<10	395,1	361,2	421,9	16	0	0	
10-15	517,7	502,5	564,0	100	0	0	
15-20	650,2	578,9	721,5	100	50	0	
>20	783,8	667,7	910,8	100	100	38	

Как видно из представленных данных, в случае увеличения значений МПК до $1,5\,$ и $2\,$ мкг/мл для MRSA, процент достижения целевых $\Phi K/\Phi Д$ отношения снижается до $30\,$ % в группе пациентов, где $C_{trough}\,$ достигали $10\text{-}15\,$ мкг/мл и до $70\%\,$ в группе $C_{trough}\,$ 15-20 мкг/мл, соответственно через $48\,$ часов от начала терапии. Гипотетически достижение целевого $\Phi K/\Phi Д\,$ значения в случае увеличения МПК до $2\,$ мкг/мл, возможно лишь в случае достижения $C_{trough}\,$ выше $20\,$ мкг/мл). При прогнозировании соотношения $\Phi K/\Phi Д\,$ у пациентов на момент завершения A E T, целевых значений ($\Pi \Phi K_{24}/M\Pi K{>}400$) в большинстве случаев достигали пациенты, у которых уровень $C_{trough}\,$ был выше $10\text{-}15\,$ мкг/мг. При этом на момент завершения терапии, в случае увеличения $M\Pi K\,$ до $1,5\,$ или $2\,$ мкг/мл, увеличивался риск не достижения целевых $\Phi Z H$ значений от $1,5\,$ или $1,5\,$ мкг/мл, увеличивался риск не достижения целевых $1,5\,$ уначений от $1,5\,$ или $1,5\,$ мкг/мл, увеличивался риск не достижения целевых $1,5\,$ уначений от $1,5\,$ или $1,5\,$ мкг/мл, увеличивался риск не достижения целевых $1,5\,$ уначений от $1,5\,$ или $1,5\,$ мкг/мл, увеличивался риск не достижения целевых $1,5\,$ уначений от $1,5\,$ или $1,5\,$ мкг/мл, увеличивался риск не достижения целевых $1,5\,$ уначений от $1,5\,$ или $1,5\,$ или $1,5\,$ мкг/мл, увеличивался риск не достижения целевых $1,5\,$ уначений от $1,5\,$ или $1,5\,$ ил

ВЫВОДЫ

- 1. У пациентов после кардиохирургических вмешательств развитие ОПП легкой и средней степени тяжести имеет место в 49,6% случаев. ОПП является фактором риска инфекционных осложнений (p<0,0001), влияет на длительность госпитализации (p=0,001376) и летальность (p=0,0154).
- 2. Частота назначения ванкомицина у пациентов кардиохирургического профиля в рамках периоперационной профилактики достигает 42,1% и не влияет на частоту и тяжесть ОПП в послеоперационном периоде (p=0,566). При эмпирической терапии инфекционных осложнений частота назначения ванкомицина составляет 54,4% и

- также не влияет на частоту и тяжесть ОПП в послеоперационном периоде (p=0.977).
- 3. По фармакокинетического данным исследования пациентов y профиля с/без ОПП при стандартном кардиохирургического подходе к дозированию параметры ФК характеризуются высокой вариабельностью: значение Стоиор через 48 часов от начала терапии составляют 10,5 [5,9-20,5] и 13,5 [8,1-30,0] мкг/мл соответственно; на момент завершения терапии - 13,6 [4,7-30,1] и 12,2 [6,4-22,8] мкг/мл соответственно. По данным математического моделирования значения C_{trough} через 48 часов 16,2 [14,219,7] и 14,03 [13,24-18,04] мкг/мл соответственно, на момент завершения терапии -8,3 [6,1-11,6] и 10,14 [5,7-12,5] мкг/мл соответственно.
- 4. Параметры ФК ванкомицина по данным фармакокинетического исследования и математического моделирования имеют достоверные различия: через 48 часов от начала АБТ значения равновесная С_{trough} по данным ММ достоверно выше фактического уровня С_{trough} (16,59 [14,0324,8] и 11,32 [8,1-16,4] мкг/мл, соответственно (р=0,004); на момент завершения терапии значения С_{trough} по данным ФКИ и ММ достоверно не различались (12,59 [8,5-22,8] и 8,65 [5,9-12,06] мкг/мл, р=0,092). Значение ПФК₂₄ по данным ММ и ФКИ через 48 часов от начала терапии достоверно не различались (р = 0,715); на момент завершения АБТ значение ПФК₂₄ по данным ММ было достоверно ниже показателей ФКИ 347,03 [267,43-479,99] и 564,04 [409,5-751,9] мкг*ч/мл соответственно (р=0,011). Значения уровня Сl_{van} 107,64±45,1 мл/мин по данным ФКИ были достоверно выше расчетных методик Моізе-Вгоdе, DeRyke, Реа и «ClinCalc») (р=0,054), что связано с высоким процентом относительной ошибки указанных методик как в группе с ОПП (43-60%), так в группе без ОПП (35 49%).
- 5. Значения C_{trough} в диапазоне 10-15 мгк/мл позволяют достигать $\Pi\Phi K_{24}/M\Pi K>400$ при условии, что МПК=1 мкг/мл для *MRSA*. Исключение составляет группа пациентов, в которой значение равновесных C_{trough} ниже 10 мкг/мл, при котором целевое отношение $\Phi K/\Phi Д$ возможно достичь лишь у 55% пациентов. При прогнозировании ситуации, в которой значения МПК увеличиваются до 1,5 и 2 мкг/мл, вероятность достижения $\Pi\Phi K_{24}/M\Pi K>400$ в группе пациентов при C_{trough}

в диапазоне 10-15 мкг/мл снижается до 30 %, при C_{trough} 15-20 мкг/мл - до 70%. На момент завершения терапии отмечена аналогичная закономерность.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- 1. Пациентам кардиохирургического профиля в раннем послеоперационном периоде необходимо проводить скрининг с целью выявления ранних признаков ОПП согласно критериям AKIN с оценкой расчетных значений клиренса креатинина до операции, длительности оперативного вмешательства, увеличения интраоперационного объема кровопотери и снижения фракции выброса.
- 2. У больных кардиохирургического профиля с ОПП легкой и умеренной степени тяжести в послеоперационном периоде для подбора эффективной и безопасной дозы ванкомицина необходимо проведение терапевтического лекарственного мониторинга на основе прямого определения концентрации ванкомицина в плазме крови методом высоэффективной жидкостной хромотографии с определением С_{trough}, С_{реак}, расчета ПФК₂₄ и отношения ПФК₂₄/МПК.
- 3. У больных кардиохирургического профиля без ОПП для расчета эффективных и безопасных доз ванкомицина возможно использование методов математического моделирования параметров фармкокинетики C_{trough} , C_{peak} , расчета $\Pi\Phi K_{24}$ и отношения $\Pi\Phi K_{24}/M\Pi K$.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

- 1. **Лукина М.В.,**Чукина М.А., Ших Н.В., Шмарова Д.Г. Клинический анализ случаев неблагоприятных побочных реакций в условиях многопрофильного стационара//Материалы VII конференции молодых ученых РМАПО с международным участием «Шаг в завтра. -2016г. том II.-С. 21-23.
- 2. Андрущишина Т.Б., **Лукина М.В.,** Чукина М.А., Морозова Т.Е. Оценка рациональности, эффективности и безопасности назначения антимикробных препаратов в многопрофильном стационаре//Сборник тезисов XI международного научного конгресса Рациональная фармакотерапия. -2016г.-С.6-9.
- 3. **Lukina M.V.,** Chukina M.A., Andruchichina T.B., Morozova T.E. Risk factors for acute kidney injury in cardiac surgical patients with infectious complications in the early postoperative period. Clinical Therapeutics. -2017. -V39(N8S) c.30.
- 4. **Лукина М.В.,** Чукина М.А., Андрущишина Т.Б., Морозова Т.Е. Факторы риска развития острого почечного повреждения у больных хирургического профиля с гнойно-септическими осложнениями//Сборник материалов XXIV Российского национального конресса "Человек и лекарство".- 2017.-С.35.
- 5. **Лукина М.В.** Острое почечное повреждение у пациентов хирургического профиля в раннем послеоперационном периоде. Частота развития факторов риска//Материалы VIII конференции молодых ученых РМАНПО "Горизонты медицинской науки".-2017(1).-С.265-266.
- 6. **Лукина М.В.,** Андрущишина Т.Б., Чукина М.А., Морозова Т.Е. Анализ рациональности назначения антибактериальных препаратов для периоперационной профилактики у пациентов хирургического профиля//Клиническая фармакология и терапия.-2018.-№2(27)-с.64-68.
- 7. **Лукина М.В.,** Андрущишина Т.Б., Чукина М.А., Морозова Т.Е. Оценка рациональности проведения периоперационной антимикробной профилактики инфекционных осложнений у пациентов после хирургических вмешательств//**Вестник РГМУ** (Bulletinof RSMU).-2018-№1-с.44-50.
- 8. Раменская Г.В., **Лукина М.В.,** Андрущишина Т.Б., Чукина М.А., Царев И.Л., Вартанова О.А., Морозова Т.Е. Параметры фармакокинетики ванкомицина у больных с нарушением функции почек в послеоперационном периоде:

сравнение результатов фармакокинетического исследования и математического моделирования//**Вестник РГМУ** (Bulletinof RSMU).-2018-№4-с.74-79.

9. Раменская Г.В., **Лукина М.В.,** Андрущишина Т.Б., Чукина М.А., Царев И.Л., Вартанова О.А., Морозова Т.Е. Математическое моделирование параметров фармакокинетики ванкомицина: возможности и сравнение с результатами терапевтического лекарственного мониторинга// **Биомедицина**.-2018.-№4-С.51-61.

СПИСОК СОКРАЩЕНИЙ

АБП - антибактериальный препарата

БЛРС -бета-лактамазы расширенного спектра

ВЭЖХ - высоко-эффективная жидкостная хроматография

ИЗАМП - ингибитор-защищенный аминопенициллин

ИОХВ - инфекция области хирургического вмешательства

КК - клиренс креатинина

ММ -математическое моделирование

МПК - минимальная подавляющая концентрация

НП - нозокомиальная пневмония

НПР -нежелательная побочная реакция

ОПП - острое почечное повреждение

ПФК₂₄ - площадь под фармакокинетической кривой за 24 часа

цФ - цефалоспорины

CL_{van} - клиренс ванкомицина

Средк - пиковая концентрация

 C_{trough} - остаточная концентрация

К_е! - константа элиминации