федеральное государственное автономное образовательное учреждение высшего образования

Первый Московский государственный медицинский университет им. И.М. СеченоваМинистерства здравоохранения Российской Федерации

(Сеченовский Университет)

Институт фармации им. А.П. Нелюбина Кафедра фармацевтического естествознания

Методические материалы по дисциплине:

Молекулярная биология

основная профессиональная образовательная программа высшего образования - программа специалитета

33.05.01 Фармация

- 1. Способ кодирования последовательности аминокислот полипептида с помощью последовательности нуклеотидов нуклеиновой кислоты. Ответ: Генетический код, код.
- 2. Участки некодирующей ДНК, расположенные между тандемно повторяющимися генами, например, между генами рибосомальной РНК и обеспечивающие высокий уровнь точности транскрипции в связанных генах называются Ответ Спейсеры, спейсер, спейсеры.
- 3. Последовательность нуклеотидов ДНК, узнаваемая РНК-полимеразой как стартовая площадка для начала транскрипции, включающая в свой состав Бокс Прибнова (5')-ТАТААТ-(3'); (3')-АТАТТА-(5') или ТАТА бокс(5')-ТАТА-(3') (3')-АТАТ-(5') называется......Ответ: Промо́тор (promoter), промотер.
- 4. Ключевое событие в ходе деления клетки. Процесс создания двух дочерних молекул ДНК на основе родительской молекулы ДНК называется......Ответ: Репликация, репликация
- 5. Фермент, способный удалить суперспирали в течение репликации ДНК называется Ответ: Топоизомераза, топизомераза
- 6. Класс ферментов, которые имеются у всех живых организмов и которые для движения вдоль сахарофосфатного остова нуклеиновых кислот (ДНК, РНК, гибридов между ДНК и РНК) и разрыва внутри- или межмолекулярных водородных связей между основаниями используют энергию АТФ или ГТФ и состоят из шести доменов, каждый из которых работает, используя молекулу АТФ назывется......Ответ: Геликаза, геликазы 7. Ферменты, катализмичение коралентное симирание непей ЛНК в лушиемсе
- 7. Ферменты, катализирующие ковалентное сшивание цепей ДНК в дуплексе при репликации, репарации и рекомбинации называютсяОтвет ДНК-лигазы, лигазы, лигаза
- 8. Отношение количества размножающихся клеток ко всей массе данной клеточной популяции называетсяОтвет Пролиферативный пул, пул, пролиферативный пул
- 9. Период жизни клетки от момента её возникновения в процессе деления до гибели или конца последующего деления называется..... Ответ: Жизненным циклом, жизненный цикл.
- 10. Семейство белков активаторов циклин-зависимых протеинкиназ (CDK) (CDK, cyclin-dependent kinases) —

ключевых ферментов, участвующих в регуляции клеточного цикла эукариот называют ... Ответ: циклины, циклин.

- 11. Посттрансляционное присоединение ферментами убиквитинлигазами одного или нескольких мономеров убиквитина с помощью ковалентной связи к боковым аминогруппам белка-мишени называетсяОтвет: Убиквитинирование, убиквитинирование
- 12. Многобелковый комплекс, разрушающий ненужные или дефектные белки при помощи протеолиза называетсяОтвет: протеасома.
- 13. Вещества, представляющие собой класс гормоноподобных регуляторов, угнетающих клеточное размножение называются...Ответ: Кейлоны, кейлоны
- 14. Регулируемый процесс программируемой клеточной гибели, в результате которого клетка распадается на отдельные апоптотические тельца, ограниченные плазматической мембраной называется... Ответ: апоптоз, Апоптоз
- 15. Органоид, внешняя мембрана которого не гибкая, не образует складок, напоминает каркас. Внутренняя мембрана имеет выросты или кристы, на которых фиксируются белки, образуя аппарат для более эффективного процесса синтеза АТФ Ответ: Митохондрия, митохондрия
- 16. Соединение, представляющее собой трифосфорный эфир аденозина, который является производным аденина и рибозы, поставляющее энергию для большинства биохимических реакций, происходящих в клетке, так как расщепление этой молекулы ведет к большому выделению энергии называется. Ответ: АТФ, аденозинтрифосфорная кислота
- 17. Фермент внутренней мембраны (TIM) представляющий собой комплекс белков, облегчающий транслокацию белков через внутреннюю мембрану и в матрикс митохондрий называетсяОтвет: Транслоказа, транслоказа 18. Путь Эмбдена—Мейергофа— Парнаса процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты и 2 молекулы АТФ называется.....Ответ Гликолиз, гликолиз
- 19. Сложноустроенный белковый комплекс, участвующий в процессе фотосинтеза, где происходит окисление воды в

марганцевом кластере —в реакционном центре которого содержится, помимо прочего, 4 марганца, хлор и кальций называетсяОтвет Фотосистема II, фотосистема.

- 20. Марганцевый кластер, который локализован в Фотосистеме II, изменяя поочередно степень окисления, может отдавать последовательно 4 электрона, которые далее восполняются за счет окисления двух молекул воды. При этом процессе выделяется....Ответ: Кислород, кислород, О2
- 21. Марганцевый кластер может постепенно отдавать по одному электрону на реакционный центр ФСІІ, восстанавливая пигмент, который отдал электроны в электронную транспортную цепь (ЭТЦ). В качестве основного пигмента в Фотосистеме ІІ используется Ответ: хлорофилл, Хлорофилл, хлорофилл Р680, Р680
- 22. Хинон, вовлечённый в цепь переноса электронов световой фазы фотосинтеза. Во время этой фазы восстанавливается (принимает два протона (H+) из стромы хлоропласта и два электрона (e-) из фотосистемы II) называется Ответ: пластохинон, Пластохинон
- 23. Медьсодержащий белок, состоящий у большинства сосудистых растений из 99 аминокислот, имеет молекулярную массу около 10,5 кДа, функцией которого является транспорт электронов от фотосистемы II к фотосистеме I называется.....Ответ: пластоцианин
- 24. Группа небольших (6—12 кДа) растворимых белков, содержащих железосерные кластеры основной функцией которых является перенос одного или двух электронов за счёт изменения степени окисления атомов железа называется ... Ответ: Ферредоксины, ферредоксин.
- 25. Медико-биологическая наука, изучающая явления жизни на уровне биологических макромолекул белков и нуклеиновых кислот, таких систем, как бесклеточные структуры, вирусы и, как предел, на уровне клетки

Ответ: молекулярная биология, мб,

26. Американский биолог, который в 1962 году совместно с Френсисом Криком и Морисом Х. Ф. Уилкинсом был удостоен Нобелевской премией по физиологии и медицине за открытие структуры молекулы ДНК

Ответ Джеймс Уотсон, Уотсон

27. Крупнейший российский биолог, организатор науки, один из создателей отечественной школы экспериментальной биологии (физико-химической экспериментальной биологии), один из основателей молекулярной биологии, автор основополагающей идеи матричного синтеза хромосом, первым сформулировавший понятия как биоматрицы («наследственные молекулы»), так и эпигенетики.

Ответ: Кольцов, Н.К. Кольцов, Кольцов Н.К., Николай Константинович Кольцов, Николай Кольцов,. Кольцов Николай Константинович 28. Класс липидов, молекула которых имеет гидрофильную "головку", содержащую фосфатную группу, и два гидрофобных "хвоста", полученных из жирных кислот, соединенных молекулой глицерина.

Ответ: Фосфолипиды, Фосфатиды

29. Эластическая молекулярная структура, состоящая из белков и липидов, отделяющая содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирующая обмен между клеткой и средой и разделяющая клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определённые условия среды

Ответ: Клеточная мембрана, цитолемма, плазмалемма, плазматическая мембрана, мембрана

30. Клеточная мембрана - эластическая молекулярная структура, состоящая из белков и липидов, отделяющая содержимое любой клетки от внешней среды, обеспечивая её целостность имеет строение

Ответ: Жидкостно-мозаичное, мозаичное

31. Обширный класс ядерных белков, выполняющих две основные функции: они участвуют в упаковке нитей ДНК в ядре и в эпигенетической регуляции таких ядерных процессов, как транскрипция, репликация и репарация. Ответ Гистоны, гистон

- 32. .Вторым уровнем компактизации ДНК является..... Ответ Соленоидная структура, соленоид
- 33. Спираль, которую образуют три цепи ДНК (тройная спираль ДНК) называется Ответ H, H-форма
- 34. Тип укладки ДНК, где четыре гуаниновых основания из разных цепей образуют плоскую структуру, удерживаемую парными взаимодействиями G-G называется Ответ- G-квадру́плекс, G-спираль
- 35. Одно из основных отличий РНК от ДНК сахар рибоза. В рибозе присутствует в 3′ положении ОН-группа. Данная ОН группа принимает особое пространственное положение, которое делает невозможным создание устойчивой двойной спирали. Это конформационное положение называется.... Ответ 3′ endo положение; 3′ endo;3положение; 3.
- 36. 39. РНК, содержащая информацию о первичной структуре (аминокислотной последовательности) белков, которая синтезируется на основе ДНК в ходе транскрипции, после чего, в свою очередь, используется в ходе трансляции как матрица для синтеза белков. Ответ Ответ: м-РНК (информационная РНК, и-РНК).
- 37. РНК рибонуклеиновая кислота, обеспечивающая взаимодействие аминокислоты, рибосомы и матричной РНК (м-РНК) в ходе трансляции. Ответ: Транспортная РНК, т-РНК
- 38. РНК, которая имеет типичную длину от 73 до 93 нуклеотидов и размеры около 5 нм, вторичную структуру в виде клеверного листа, третичную в виде L называется...... Ответ: Транспортная РНК, т-РНК
- 39. Класс РНК, которые встречаются в ядре эукариотических клетоки основными функциями которых являются сплайсинг (удаление интронов из незрелой мРНК), регуляция факторов транскрипции (7SK РНК) или РНК-полимеразы (В2 РНК), поддержание целостности теломер называются Ответ МЯ-РНК, малые ядерные РНК, малыми ядерными РНК.
- 40. Длинная некодирующая РНК, входящая в состав эукариотической частицы узнавания сигнала (signal recognition particle, SRP). в составе SRP называется Ответ 7SL PHK
- 41. Одноцепочечные РНК, которые комплементарны мРНК, транскрибируемой в клетке, или гену-мишени и обладающие

- функцией активация или подавление экспрессии гена-мишени называютсяОтвет Антисмысловые РНК (Antisense RNA)
- 42. Класс двухцепочечных РНК, длиной 20-25 нуклеотидов, которые взаимодействуя с матричной РНК (мРНК) целевого гена приводит к деградации последней (в процессе РНК-интерференции), предотвращая трансляцию мРНК на рибосомах в кодируемый ею белок называются Ответ Малые интерферирующие РНК или короткие интерферирующие РНК (si- RNA, small interfering RNA) или ки- РНК.
- 43. Короткие молекулы длиной в 24—30 нуклеотидов, закодированные в центромерных и теломерных областях хромосомы. они образуются одной цепью с характерной особенностью урацилом (U) на 5'-конце и метилированным 3'-концом называются Ответ пи-РНК
- 44. РНК, функция которой подавление активности МГЭ на уровне транскрипции и трансляции во время эмбриогенеза, когда непредсказуемые перетасовки генома особенно опасны и могут привести к гибели зародыша называются Ответ пи-РНК.
- 45. . Около 40 % РНК, которые кодируются генами, лежащими в интронах длиной 18—25 нуклеотидов (в среднем 22) и принимают участие в транскрипционной и посттранскрипционной регуляции экспрессии генов путём РНК-интерференции называются....Ответ Малая РНК, микроРНК (microRNA, miRNA).
- 46. Участки некодирующей ДНК, расположенные между тандемно повторяющимися генами, например, между генами рибосомальной РНК, функция которых заключается в обеспечении высокого уровня точности транскрипции в связанных генах называются....Ответ Спейсеры, Спейсер 47. Фермент, осуществляющий синтез молекул РНК, состоящий у прокариот из 6 субъединиц: β'- субъединицы, β-субъединицы, 2α субъединицы, ω-субъединицы, σ- субъединицы.... Ответ РНК-полимераза
- 48. Последовательность нуклеотидов ДНК, узнаваемая РНК-полимеразой как стартовая площадка для начала транскрипции называется Ответ Промотор (promoter).
- 49. Единица РНК-полимеразы взаимодействует с ДНК таким образом, что обеспечивает стэкинг взаимодействие своим белком, компенсируя удаление комплементарной цепи ДНК на

- время и состоящая из четырех доменов, которые связываются с промотором (-35, -10 регион, бокс Прибнова) называется Ответ. Сигма единица, . сигма единица, сигма.
- 50. Функциональная единица генома у прокариот, в состав которой входят цистроны (гены, единицы транскрипции), кодирующие совместно или последовательно работающие белки и объединенные под одним (или несколькими) промоторами называетсяОтвет Оперон.
- 51. Оперон, который содержит 5 структурных генов (цистронов): trpE, trpD, trpC, а также trpB и trpA, кодирующие субъединицы триптофансинтазы и аттенюаторную последовательность называютОтвет Триптофановый оперон, Триптофановый, триптофановый.
- 52. Полицистронный оперон бактерий, кодирующий гены метаболизма лактозы, в состав входят следующие элементы промотор, оператор, ген1, ген2, ген3, терминатор называется Ответ лактозный оперон.
- 53. Бактериальный оперон, кодирующий белки, необходимые для метаболизма арабинозы называют.....Ответ арабинозный оперон.
- 54. Участок ДНК, который позволяет усиливать транскрипцию гена, связывая белки-активаторы (транскрипционные факторы), расположенные на некотором (иногда большом, порядка сотен тысяч пар нуклеотидов) расстоянии от точки начала транскрипции называютОтвет Энхансеры 55. Последовательность ДНК, с которой связываются белки-репрессоры (факторы транскрипции). что приводит к понижению или к полному
- подавлению синтеза РНК ферментом ДНК-зависимой РНК-полимеразой назывется..... Ответ Сайленсер (silencer)

ФОС по дисциплине "Молекулярная биология" по специальности Фармация 33.05.01.

БЛОК А. СТРОЕНИЕ КЛЕТКИ. ДЕЛЕНИЕ КЛЕТКИ

- 1. Основоположником клеточной теории является
- 1) ТеодорШванн
- 2) Роберт Гук
- 3) Рудольф Вирхов
- 4) Иоганн Мюллер
- 5) Броун
- 2. Какой ученый впервые применил микроскоп для исследования растительных и животных тканей
- 1) Р. Гук
- 2) Шлейден
- 3) Шванн
- 4) Броун
- 5) А.Левенгук
- 3. Кто сформулировал три положения клеточной теории
- 1) Т. Шванн
- 2). Р.Вирхов
- 3) К. Линей
- 4) Шлейден
- 5) Броун
- 4. Кто дополнил клеточную теорию

1) Р.Вирхов

- 2) К. Линей
- 3) Шлейден
- 4)Шванн
- 5) Броун
- 5. Кольцевая ДНК имеется
- 1) в нуклеоиде, митохондриях и хлоропластах
- в ядре
- 3) только в нуклеоиде
- 4) только в хлоропласта
- 5) только в митохондрия
- 6. Система цистерн, трубочек, канальцев и вакуолей, расположенная в гиалоплазме называется

1) ЭПС

- 2)аппарат Гольджи
- 3) митохондрии
- 4) пластиды
- 5) Цитоплазма
- 7. Функцию транспорта веществ, синтеза липидов, разграничения ферментных систем выполняет

1) **ЭПС**

- 2)аппарат Гольджи
- 3) гиалоплазма
- 4) вакуоли
- 5) лизосомы
- 8. Свойством избирательной проницаемости обладает

1) мембрана

- 2) надмембранный комплекс
- 3) субмембранный комплекс
- 4) гиалоплазма
- 5) цитоплазма
- 9. Функцию синтеза сложных углеводов в растительных клеткахвыполняют

1) диктиосомы

- ЭΠC
- 3) рибосомы
- 4)лизосомы
- 5) аппаратГольджи
- 10. Хромосомы состоят из

1) РНК, ДНК, белок

- 2) PHK
- 3) РНК + белок
- 4) РНК + ДНК
- 5) ДНК + белок
- 11. ДНК содержат

1) ядро, хлоропласт, митохондрии, нуклеоид

- 2) ядро
- 3) хлоропласт
- 4) митохондрии
- 5) нуклеоид
- 12. Гликокаликс состоит из

1) белков и углеводов

- 2) белков и жиров
- 3) углеводов и жиров
- 4) только белков
- 5) только углеводов
- 13. Пластиды в клетке располагаются в

1) гиалоплазме

- 2) плазмалемме
- 3) кариоплазме
- 4) клеточном соке
- 5) белковой строме
- 14. Функциясубмембранного комплекса

1) опорно - сократительная

- 2) внутриклеточное взаимодействие
- 3) запасающая

- 4)защитная
- 15. Единичные выросты цитоплазмы на поверхности клетки
- 1) жгутики
- 2) реснички
- 3) миофибриллы
- 4) волоски
- 5) микрофиламенты
- 16. Органеллы специального назначения в виде тонких нитей белка, обеспечивающие сокращение мышечных волокон это

1) миофибриллы

- 2) жгутики
- 3) реснички
- 4) микрофиламенты
- 17. Пузырьки, ограниченные одной мембраной и заполненные ферментами это

1) лизосомы

- 2) пузырьки аппарата Гольджи
- 3)капли жира
- 4) сферосомы
- 5) вакуоли
- 18. Пластиды, выполняющие запасающую функцию

1) лейкопласты

- 2) хромопласты
- 3) хлоропласты
- 4) все пластиды
- 19. Два слоя липидов и встроенные в них молекулы белка образуют

1) мембрану

- 2) гликокаликс
- 3) субмембранный комплекс
- 4) поверхностный аппарат клетки
- 5) оболочку растительной клетки
- 20. Девять триплетов микротрубочек составляют

1) центриоль

- 2) клеточный центр
- 3) центросферу
- 4) веретено деления
- 5) миофибриллы
- 21. Двумембранные органеллы, имеющие неполные перегородки и выполняющие функцию дыхания

1) митохондрии

- 2) хлоропласты
- 3) лейкопласты
- 4) хромопласты
- 5) ядро
- 22. Лизосомы располагаются в

1) гиалоплазме

- 2) кариоплазме
- 3) клеточном соке
- 4) белковой строме
- 23. В образовании квантосом участвует
- 1) фосфор и магний
- 2) натрий
- 3) фосфор
- 4) цинк
- 5) магний
- 24. Железо входит в состав

1) цитохромов и гемоглобина

- 2) цитохромов
- 3) гемоглобина
- 4) хлорофилла
- 5) каротина
- 25. Магний входит в состав

1) хлорофилла

- 2) цитохромов
- 3) гемоглобина
- 4) каротина
- 5) цитохромов и гемоглобина
- 26. К надмембранному комплексу относится
- 1) гликокаликс
- 2)микротрубочки
- 3) двойной слой фосфолипидов
- 4) интегральные белки
- 5) полуинтегральные белки
- 27. К субмембранному комплексу относится

1) периферическая гиалоплазма

- 2) двойной слой фосфолипидов
- 3) интегральные белки
- 4) периферические белки
- 5) полуинтегральные белки
- 28. Мембрана эукариотической животной клетки состоит из

1) двойной слой фосфолипидов и белки

- 2) интегральные белки
- 3) периферическая гиалоплазма
- 4) периферические белки
- 5) полуинтегральные белки
- 29. Функции центральной вакуоли

1) запас воды, питательных веществ, поддержание тургорного давления, резервуар для содержания пигментов

- 2) запас воды, питательных веществ
- 3) поддержание тургорного давления

- 4) резервуар для содержания пигментов
- 5) запас воды, питательных веществ, поддержание тургорного давления
- 30. Сократительное кольцо животных клеток состоит из

1) актинаи миозина

- 2) фрагмопласта
- 3) пектиновых веществ
- 4) целлюлозы
- 31. Приделении мейозом уменьшение числа хромосом вдвое происходит
- 1) впервом делении
- 2) во втором делении
- 3) начинается в первом, а заканчивается во втором
- 4) в интерфазе
- 32.В анафазе первого мейотического деления к полюсам клетки расходятся
- 1) гомологичные хромосомы
- 2) хроматиды
- 3) в этой фазе нет расхождения
- 4)биваленты
- 33. Указать, какие из перечисленных процессов характерны для клеточного ядра в синтетический период интерфазы

1) редупликация ДНК

- 2) спирализация хромосом
- 3) образование нитей веретена деления
- 4) деспирализация хромосом
- 34. Указать, какие из перечисленных явлений характерны для телофазы митоза

1) деспирализация хромосом

- 2) разделение хромосом на хроматиды
- 3) формирование нитей веретена деления
- 4) спирализация хромосом
- 35. В основе образования соматических клеток организмалежит

1) деление, сохраняющее исходный хромосомный набор

- 2) деление, уменьшающее исходный набор хромосом
- 3) амитоз
- 4) бинарное деление
- 36. В какой стадии профазы 1-го мейотического деления происходит кроссинговер

1) в пахитену

- 2) в лептотену
- 3) в зиготену
- 4) в диплотену
- 37. В метафазу 1-ого мейотического деления на экваторе клетки располагаются

1) биваленты

- 2) хроматиды
- 3) хромосомы
- 4) униваленты

- 38. Какие процессы происходят в клетке в постсинтетический период интерфазы
- 1) интенсивный синтез РНК и белка
- 2) синтез пуриновых и пиримидиновых оснований нуклеотидов
- 3) репликация ДНК
- 4) спирализация ДНК
- 39. В какую фазу митоза обычно подсчитывают число хромосом

1) в метафазу

- 2) в профазу
- 3) в анафазу
- 4) в телофазу
- 40. Какие из перечисленных явлений характерны для анафазы 2-го мейотического деления

1) расхождение к полюсам клетки хроматид

- 2) выстраивание бивалентов на экваторе клетки
- 3) расхождение к полюсам клетки хромосом
- 4) выстраивание хромосом на экваторе клетки

Блок Б.ОБМЕН ВЕЩЕСТВ (ФОТОСИНТЕЗ)

)

- 1. Организмы, использующие для питания только неорганический источник углерода
- 1) автотрофы
- 2) гетеротрофы
- 3) автотрофы и гетеротрофы
- 4) миксотрофы
- 2. Организмы, не способные синтезировать органические вещества изнеорганических соединений
- 1) гетеротрофы
- 2) автотрофы
- 3) автотрофы и гетеротрофы
- 4) фотосинтетики
- 3. К фотосинтетикам не относятся

1) грибы

- 2) растения
- 3) цианобактерии
- 4) водоросли
- 4. К реакциям пластического обмена в клетке относятся

1) репликация ДНК и биосинтез белка

- 2) фотосинтез, хемосинтез и гликолиз
- 3) гликолиз, фотосинтез и биосинтез белка
- 4) биосинтез белка, репликация ДНК и гликолиз
- 5. При фотосинтезе используется энергия
- 1)квантовсвета и АТФ
- 2)только АТФ
- 3)квантов света и углеводов
- 4)квантов света, АТФ и углеводов

- 6. В световую фазу фотосинтеза происходят реакции
- 1) фотолиз воды, синтез АТФ, синтез переносчика протонов (НАДФ-Н2)
- 2) фотолиз воды
- 3) синтез АТФ
- 4) синтез переносчика протонов (НАДФ-Н2)
- 7. Для реакций световой фазы фотосинтеза необходимы
- 1) хлорофилл, вода, НАДФ+, АДФ и неорганический фосфат
- 2) вода, хлорофилл, НАДФ+, АТФ
- 3) вода, углекислый газ, АДФ и неорганический фосфат
- 4) хлорофилл, вода, углекислый газ, АДФ и неорганический фосфат
- 8. В световую фазу фотосинтеза энергия квантов света расходуется на синтез

1)АТФ и переносчика протонов (НАДФ-Н2)

- 2) только АТФ
- 3) АТФ и углеводов
- 4) переносчика протонов (НАДФ-Н2) и углеводов
- 9. В темновую фазу фотосинтеза происходят реакции
- 1) синтеза углеводов
- 2) синтеза АТФ
- 3) фотолиза воды
- 4) синтеза переносчика протонов
- 10. Для темновой фазы фотосинтеза источником энергии служит

1) углекислыйгаз и переносчик протонов (НАДФ-Н2)

- 2) углекислый газ
- 3) углекислый газ и АТФ
- 4) АТФ и переносчик протонов (НАДФ-Н2)
- 11. В результате фотосинтеза на Земле

1) образуются органические вещества и кислород

- 2) поглощается вода и образуется углекислый газ
- 3) образуются органические вещества и вода
- 4) поглощается углекислый газ и органические вещества
- 12. Хемосинтезирующие бактерии используют для жизнедеятельности энергию

1) реакций окисления химических веществ

- 2) солнечного света
- 3) реакций восстановления
- 4) реакций окисления и восстановления
- 13. Организмы в качестве основного источника энергии используют в первую очередь
- 1) углеводы
- 2) жиры
- 3) белки и жиры
- 4) белки и углеводы
- 14. Белки вовлекаются в энергетический обмен
- 1) после израсходывания запасов углеводов и жиров
- 2) постоянно наряду с жирами
- 3) постоянно наряду с углеводами

- 4) после израсходывания запаса углеводов
- 15. Реакции ферментативного окисления глюкозы в клетке включают
- 1) только гликолиз
- 2) только цикл Кребса
- 3) только гликолиз и окислительноефосфорилирование
- 4) гликолиз, цикл Кребса и окислительноефосфорилирование
- 16. Гликолизом называется последовательность реакций, в результате которых
- 1) глюкоза расщепляется на две молекулы пировиноградной кислоты (ПВК)
- 2) крахмал расщепляется до глюкозы
- 3) глюкоза расщепляется на углекислый газ и воду
- 4) глюкоза расщепляется на две молекулы молочной кислоты
- 17. При анаэробном дыхании (брожении) пировиноградная кислота (ПВК) расщепляется до
- 1) молочной кислоты или этилового спирта с углекислым газом
- 2) углекислого газа и воды
- 3) глюкозы, молочной кислоты и углекислого газа
- 4) глюкозы, этилового спирта или молочной кислоты
- 18. При аэробном дыхании продукт гликолиза пировиноградная кислота (ПВК) в конечном итоге окисляется до

1) углекислого газа и воды

- 2) молочной кислоты
- 3) этилового спирта и углекислого газа
- 4) молочной кислоты и углекислого газа
- 19. Реакции окислительногофосфорилированияв клетке идут

1) на кристах митохондрий при аэробных условиях

- 2) в лизосомах при аэробных условиях
- 3) в лизосомах при анаэробных условиях
- 4) в матриксе митохондрий при аэробных условиях
- 20. Исходные вещества для полного ферментативного расщепления глюкозы

1) глюкоза, кислород, переносчик протонов (НАД+), АДФ и неорганический фосфат

- 2) молочная кислота, переносчик протонов (НАД+) и вода
- 3) глюкоза, молочная кислота, переносчик протонов (НАД+) и вода
- 4) глюкоза, кислород, молочная кислота, АДФ и неорганический фосфат
- 21. При клеточном дыхании электроны транспортируются на поверхность мембраны митохондрий
- 1) внутреннюю
- 2) наружную
- 3) наружную и внутреннюю
- 4) наружную или внутреннюю
- 22. Количество AT Φ на бескислородном этапе расщепления одной молекулыг люкозы составляет
- 1) 2 молекулы
- 2) 34 молекулы
- 3) 36 молекул

- 4) 38 молекул
- 23. Реализация наследственной информации в клетке осуществляется по схеме
- 1) ДНК->иРНК->белок
- 2) ДНК->белок
- 3) ДНК->иРНК->ДНК
- 4) белок->иРНК->ДНК
- 24. Транскрипция и трансляция в клетке относятся к обмену
- 1) пластическому
- 2) энергетическому
- 3) пластическому и энергетическому
- 4) пластическому или энергетическому
- 25. Количество возможных сочетаний триплетов генетического кода составляет
- 1) 64
- 2) 16
- 3) 20
- 4) 42
- 26. Реакции транскрипции в клетке протекают с участием
- 1) ДНК, нуклеотидов РНК и ферментов
- 2)только ДНК
- 3)только ферментов
- 4)только нуклеотидов РНК
- 27. При трансляции матрицей для синтеза полипептидной цепи служит
- 1) молекула мРНК
- 2) одна из цепей ДНК
- 3) молекулы иРНК и ДНК
- 4) молекулы тРНК
- 28.В функциональном центре рибосомы (ФЦР) при трансляции всегдаодновременно находится число нуклеотидов равное
- 1) 6
- 2) 2
- 3) 3
- 4) 9
- 29. Функция рибосомы в процессе биосинтеза белка в клетке состоит в
- 1) удерживаниииРНК, тРНК до образования пептидной связи между аминокислотами
- 2) присоединении аминокислоты к тРНК
- 3) узнавании антикодоном тРНК комплементарного ему кодона иРНК
- 4) обеспечении энергией образование пептидной связи между аминокислотами
- 30. Транскрипция и трансляция при биосинтезе белка в эукариотическойклетке происходит
- 1) в ядре и в цитоплазме
- 2) только в ядре
- 3) только в цитоплазме
- 4) в ядре или в цитоплазме

- 31.В реакциях биосинтеза белка в клетке энергия АТФ
- 1) расходуется
- 2) выделяется
- 3) не расходуется и не выделяется
- 4) на одних этапах расходуется, на других выделяется
- 32. В нециклическомфотофосфорилированиидонором электронов для фотосистемыодин (ФС-
- I) является
- 1) ΦC-**II**
- 2) вода
- 3) O2
- 4)НАДФ·Н2
- 33. Донором электронов в нециклическом фотосинтетическомфосфорилировании являются
- 1) Фотосистема II, Фотосистема I и вода
- 2) Фотосистема I и вода
- 3) Н2О и О2
- 4) O2
- 34. Акцептором СО2 в цикле Кальвина является
- 1) 1,5 РДФ
- 2) фруктоза
- 3) ATΦ
- 4) ΦΓΑ
- 35. Конечные продукты световой фазы фотосинтеза
- 1) АТФ, НАДФ:Н2
- 2) углеводы
- 3) НАД·Н2
- 4) НАДФ·Н2
- 36. Результатом инициации в биосинтезе белка является
- 1) соединение частей рибосомы
- 2) образование и-РНК
- 3) образование м-РНК
- 4) активирование аминокислот
- 37. В дыхательной цепи при полном окислении глюкозы образуется
- 1) 34 молекул АТФ
- 2) 2 молекулы АТФ
- 3) 36 молекул АТФ
- 4) 38 молекулы АТФ

БЛОК Ж. БИОСИНТЕЗ БЕЛКА

- 1. Единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов представляет собой
- 1) генетический код
- 2) хромосомный набор
- 3) хромосомный код
- 4) генетический набор
- 5) набор хромосом

- 2. Свойства генетического кода
- 1) вырожденность, триплетность, неперекрываемость, универсальность
- 2) триплетность, комплементарность, универсальность, неперекрываемость
- 3) комплементарность, множественность, неперекрываемость, триплетность
- 4) неперекрываемость, универсальность, триплетность, комплементарность
- 5) наличие знаков препинания, вырожденность, комплементарность, старт и стоп кодоны
- 3. Свойство генетического кода, при котором каждая аминокислота кодируется тремя последовательно расположенными нуклеотидами
- 1) триплетность
- 2) вырожденность
- 3) неперекрываемость
- 4) универсальность
- 5) комплементарность
- 4.Свойство генетического кода, при котором одна и та же аминокислота может кодироваться несколькими триплетами

1) вырожденность

- 2) неперекрываемость
- 3) триплетность
- 4) универсальность
- 5) наличие старт-кодона
- 5. Свойство генетического кода, при котором один и тот же нуклеотид не может входить одновременно в состав двух соседних триплетов

1)неперекрываемость

- 2) вырожденность
- 3) триплетность
- 4) универсальность
- 5) комплементарность
- 6. Свойство генетического кода, при котором каждый триплет кодирует только одну аминокислоту

1) однозначность

- 2) вырожденность
- 3) неперекрываемость
- 4) универсальность
- 5) триплетность
- 7. Свойство генетического кода, при котором одни и те же триплеты кодируют одни и те же аминокислоты у всех живых организмов

1) универсальность

- 2) вырожденность
- 3) неперекрываемость
- 4) однозначность
- 5) триплетность
- 8. Свойство генетического кода, при котором совпадает последовательность аминокислот в синтезируемой молекуле белка с последовательностью триплетов в и-РНК

1) колинеарность

- 2) вырожденность
- 3) неперекрываемость
- 4) универсальность
- 5) триплетность
- 9. Синтез белка всегда начинается с триплета
- AУΓ
- 2) УГЦ
- 3) УГУ
- **4)** AΓУ
- 5) АУЦ
- 10. Неперекрываемость генетического кода важна на этапе

1) трансляции

- 2) репликации
- 3) транскрипции
- 4) процессинга
- 5) репликации, транскрипции, трансляции
- 11. Структурной единицей, ответственной за синтез одной молекулы белка, является

1)ген

- 2) молекула ДНК
- 3) триплет
- 4) молекула РНК
- 5) молекула АТФ
- 12. Синтез второй цепи ДНК на матрице материнской это

1) редупликация

- 2) транскрипция
- 3) трансляция
- 4) конъюгация
- 5) репарация
- 13. Этапы биосинтеза белка

1) транскрипция, трансляция

- 2)кислородный, репликация ДНК
- 3)подготовительный, репликация ДНК
- 4) репликация ДНК, трансляция
- 5) бескислородный, трансляция
- 14. Переписывание наследственной информации с ДНК на и-РНК это

1) транскрипция

- 2) трансляция
- 3) репликация
- 4) конъюгация
- 5) процессинг
- 15. Последовательность нуклеотидов и-РНК комплементарна последовательности нуклеотидов в

1) одной цепи ДНК

- 2) двух цепях ДНК
- 3) молекулах т-РНК

- 4) молекулах р-РНК
- 5) молекуле белка
- 16. Комплексом из м-РНК и нескольких рибосом является(-ются)

1) полисома

- 2) триплет
- 3) ген
- 4) полисома, триплет
- 5) хроматида
- 17. Процесс перевода последовательности нуклеотидов и-РНК в первичную структуру белка называется

1) трансляцией

- 2) транскрипцией
- 3) репликацией
- 4) конъюгацией
- 5) репарацией
- 18. Количество кодонов, с помощью которых кодируются 20 аминокислот
- 1) 61
- 2) 64
- 3) 4
- 4) 62
- 5) 3
- 19. При трансляции внутри рибосомы одновременно находится участок м-РНК, равный

1) двум триплетам

- 2)одному нуклеотиду
- 3)двум нуклеотидам
- 4) одному триплету
- 5) одной аминокислоте
- 20. Реакции матричного синтеза это

1)синтез и-РНК, синтез белков, синтез т-РНК

- 2) синтез жиров, синтез белков, синтез и-РНК
- 3) синтез углеводов, синтез белков, синтез и-РНК
- 4)репликация молекулы ДНК, синтез белков, синтез и-РНК
- 5) реакции цикла Кребса
- 21. Синтез дочерней ДНК на матрице материнской ДНК происходит в направлении
- 1) от 5 конца к 3 концу
- 2) от 3 конца к 5 концу
- 3) направление не имеет значения
- 4) одновременно в обоих направлениях
- 5) сначала от 5 конца к 3 концу, а затем от 3 конца к 5 концу
- 22. Пептидная связь-это
- 1)CO **NH**
- 2)H N5
- 3)CH3 CH
- 4)C = O
- 5) CH₂ PO₃

23.Первичная структура белка - это

1)последовательность аминокислот в полипептидной цепи

- 2)глобула
- 3) спираль
- 4)глобула, спираль
- 5) комплекс из нескольких белковых молекул
- 24.Первичную структуру белка определяет

1)последовательность аминокислотных остатков и их количество

- 2)количество аминокислотных остатков
- 3)вид аминокислот и их количество
- 4) ионная связь и вид аминокислот
- 5) дисульфидная связь
- 25. Первичная структура белка поддерживается
- 1)пептидными связями
- 2)водородными связями
- 3) дисульфидными связями
- 4)разными связями
- 5) гидрофобными связями
- 26. Фермент, разрывающий водородные связи между нитями ДНК при редупликации это

1) ДНК- геликаза

- 2)ДНК-полимераза
- 3)ДНК-лигаза
- 4)РНК-полимераза
- 5) эндонуклеаза
- 27.Вторичная структура белка поддерживается связями
- 1) водородными
- 2)пептидными
- 3)дисульфидными
- 4)ковалентными
- 5) гидрофобными связями
- 28. Третичная структура белка представлена
- 1)глобулой
- 2) а-спиралями
- 3)В-слоями
- 4)несколькими глобулами
- 5) а-спиралями, В-слоями
- 29. Третичная структура белка поддерживается связями
- 1) дисульфидными
- 2)пептидными
- 3) водородными
- 4)ковалентными
- 5) гликозидными
- 30. Фермент, соединяющий фрагменты отстающей дочерней цепи ДНК при редупликацииэто

- 1)ДНК-лигаза
- 2)ДНК-полимераза
- 3) ДНК- геликаза
- 4)РНК-полимераза
- 5) эндонуклеаза
- 31. Свойство белков это

1)видовая специфичность, способность денатурировать и ренатурировать

- 2)видовая специфичность
- 3) способность денатурировать и ренатурировать
- 4) способность связывать кислород
- 5) высокая энергоемкость
- 32. Денатурация это процесс
- 1) нарушения структуры белка
- 2)восстановления структуры белка
- 3) окисления белка
- 4)восстановления и нарушения структуры белка
- 5) синтеза рибонуклеиновой кислоты
- 33. Мономерами нуклеиновых кислот являются
- 1)нуклеотиды
- 2) азотистые основания
- 3) рибоза или дезоксирибоза
- 4) азотистые основания, рибоза или дезоксирибоза
- 5) глицерин и жирные кислоты
- 34. Нуклеотид состоит из

1) пентозы, остатка фосфорной кислоты и азотистого основания

- 2)глицерина и высших карбоновых кислот
- 3) гексозы, остатка карбоновой кислоты и азотистого основания
- 4) пентозы, аминокислоты и фосфатной группы
- 5) гексозы, остатка фосфорной кислоты и азотистых оснований
- 35.ДНК от РНК отличается содержанием

1) моносахарида и азотистых оснований

- 2) моносахарида
- 3) азотистых оснований
- 4)фосфатной группой
- 5) глицерина
- 36. В эукариотической клетке ДНК содержится
- 1)в ядре, митохондриях и пластидах
- 2) только в ядре и цитоплазме
- 3) только в ядре
- 4)только в цитоплазме
- 5) только в пластидах
- 37.РНК в клетке находится в
- 1) рибосомах и цитоплазме, пластидах и митохондриях
- 2)рибосомах и цитоплазме
- 3) пластидах и митохондриях

- 4)ядре и комплексе Гольджи
- 5) только в рибосомах
- 38.К пуриновым азотистым основаниям относятся
- 1) аденин и гуанин
- 2) урацил и тимин
- 3)аденин и цитозин
- 4)гуанин и тимин
- 5) аденин и тимин
- 39.К пиримидиновым азотистым основаниям относятся
- 1) урацил и тимин
- 2)аденин и гуанин
- 3)аденин и цитозин
- 4) гуанин и тимин
- 5) аденин и тимин
- 40. Молекула ДНК состоит из

1)двух полинуклеотидных цепей, спирально закрученных антипараллельно одна относительно другой

- 2)одной полинуклеотидной цепи, спирально закрученной
- 3) трех полинуклеотидных цепей, спирально закрученных относительно друг друга
- 4)одной линейной полинуклеотидной цепочки
- 5) двух полинуклеотидных цепей, спирально закрученных параллельно одна относительно другой
- 41.Структура ДНК поддерживается за счет водородных связей между

1)комплементарными азотистыми основаниями в двух соседних цепях

- 2)соседними нуклеотидами
- 3) остатками фосфорной кислоты в остове цепей
- 4)соседними нуклеотидами, остатками фосфорной кислоты в остове цепей
- 5) остатками фосфорной кислоты и азотистыми основаниями
- 42. Нуклеотид ДНК состоит из

1) остатка фосфорной кислоты, дезоксирибозы, тимина

- 2)рибозы, остатка фосфорной кислоты, тимина
- 3) дезоксирибозы, остатка фосфорной кислоты, урацила
- 4) урацила, рибозы, остатка фосфорной кислоты
- 5) дезоксирибозы, остатка фосфорной кислоты, метионина
- 43.В состав ДНК входят азотистые основания
- 1)аденин, гуанин, цитозин, тимин
- 2)гуанин, урацил, цитозин, тимин
- 3) цитозин, аденин, тимин, урацил
- 4)тимин, гуанин, аденин, урацил
- 5) аденин, гуанин, цистеин, тимин
- 44. В составе ДНК постоянным является отношение

1)A+T

Г+Ц

 $2)A+\Gamma$

Т+Ц

- 3)T Ц 4) У

Α

5) T

45. "Правило Чаргоффа" заключается в том, что в молекуле ДНК

1) число адениновых нуклеотидов равно числу тиминовых, а число гуаниновых нуклеотидов равно числу цитозиновых

- 2) число адениновых нуклеотидов равно числу тиминовых
- 3) число гуаниновых нуклеотидов равно числу цитозиновых
- 4) число адениновых нуклеотидов равно числу гуаниновых
- 5) все нуклеотиды содержатся в равных количествах
- 46. Функции ДНК

1) передача генетической информации молекулам и-РНК, хранение генетической информации

- 2) хранение генетической информации, участие в энергетическомобмене
- 3) транспорт аминокислоты в рибосому, хранение генетической информации
- 4) сборка белковых молекул, хранение генетической информации
- 5) является матрицей для синтеза белковой молекулы
- 47. Молекулы РНК состоят из
- 1) одной полинуклеотидной цепи
- 2) одной полинуклеотидной цепи, спирально закрученной
- 3) двух полинуклеотидных цепей, спирально закрученных
- 4) трех полинуклеотидных цепей, спирально закрученных
- 5) двух параллельных линейных полинуклеотидных цепей
- 48. В состав нуклеотида РНК входят
- 1) рибоза, остаток фосфорной кислоты, урацил
- 2) тимин, остаток фосфорной кислоты, дезоксирибоза
- 3) дезоксирибоза, остаток фосфорной кислоты, урацил
- 4) аденин, дезоксирибоза, остаток фосфорной кислоты
- 5) рибоза, остаток фосфорной кислоты, цистеин.
- 49.В состав рибонуклеотидов входят азотистые основания

1) аденин, гуанин, цитозин, урацил

- 2) гуанин, аденин, цитозин, тимин
- 3) цитозин, гуанин, тимин, урацил
- 4) тимин, аденин, цитозин, урацил
- 5) аденин, гуанин, цистеин, тимин
- 50. Урацил комплементарен
- 1) аденину
- 2) гуанину
- 3)урацилу
- 4)тимину
- 5) цистеину
- 51. Аденин в ДНК комплементарен

- 1)тимину
- 2) аденину
- 3) гуанину
- 4)цитозину
- 5) цистеину
- 52. Гуанин в ДНК комплементарен
- 1)цитозину
- 2) аденину
- 3) гуанину
- 4)тимину
- 5) цистеину
- 53. Цитозин в ДНК комплементарен
- 1) гуанину
- 2) аденину
- 3)цитозину
- 4) цистеину
- 5)тимину
- 54. Тимин в ДНК комплементарен
- 1) аденину
- 2) урацилу
- 3) гуанину
- 4)цитозину
- 5)тимину
- 55. Функция и-РНК

1) перенос генетической информации от ДНК в рибосому

- 2) передача генетической информации дочерним молекулам и-РНК
- 3) доставка аминокислоты в рибосому
- 4) передача генетической информации р-РНК
- 5) хранение генетической информации
- 56. Функция т-РНК
- 1) доставка аминокислоты в рибосому
- 2) хранение генетической информации
- 3) передача генетической информации дочерним молекулам и-РНК
- 4)перенос генетической информации от ДНК в рибосому
- 5)передача генетической информации р-РНК
- 57. Функция р-РНК

1) обеспечение пространственного взаиморасположения и-РНК и т-РНК

- 2)доставка аминокислоты в рибосому
- 3)перенос генетической информации от ДНК в рибосому
- 4) передача генетической информации дочерним молекулам и-РНК
- 5) хранение генетической информации
- 58. Репликативная вилка это

1) участок ДНК, в пределах которого ДНК раскручена и разделена на отельные цепи

2) участок двойной спирали ДНК

- 3) участок ДНК, на котором происходит процесс синтеза т-РНК
- 4) участок ДНК, на котором происходит синтез белковой молекулы
- 5) участок ДНК, на котором происходит синтез и-РНК
- 59. Промотор это

1) участок, с которым связывается РНК-полимераза

- экзон
- 3) интрон
- 4) участок, с которым связывается ДНК-лигаза
- 5) поврежденный участок ДНК
- 60. Синтез и-РНК на матрице ДНК происходит в направлении
- 1) от 3 конца к 5 концу
- 2) от 5 конца к 3 концу
- 3) направление не имеет значения
- 4) одновременно в обоих направлениях
- 5) сначала от 5 конца к 3 концу, а затем от 3 конца к 5 концу
- 61. Фермент РНК-полимераза катализирует
- 1) синтез всех типов РНК
- 2) синтез т-РНК
- 3) синтез и-РНК
- 4) синтез р-РНК
- 5) репликацию ДНК
- 62. Синтез РНК на матрице ДНК катализирует фермент

1) РНК – полимераза

- 2) ДНК лигаза
- 3) ДНК- полимераза
- 4) РНК синтетаза
- 5) РНК лигаза
- 63. Синтез РНК на матрице ДНК происходит

1) на «+» - цепи

- 2) на «-» цепи
- 3) на обоих цепях одновременно
- 4) цепь не имеет значения
- 5) сначала на на «+» цепи, а затем на «-» цепи
- 64. «+» цепь это

1) участок ДНК, на котором происходит синтез РНКот 3 конца к 5 концу

- 2) участок РНК, на котором происходит синтез белковой цепи
- 3) участок ДНК, содержащий экзоны
- 4) участок ДНК, содержащий интроны
- 5) участок ДНК, на котором происходит синтез РНК от 5 конца к 3 концу
- 65. Процессинг происходит

1) в ядре перед выходом м-РНК в цитоплазму

- 2) в прокариотических клетках
- 3) в цитоплазме на рибосомах
- 4) во время репликации ДНК
- 5) в начале транскрипции

- 66. Процесс вырезания интронов это
- 1) процессинг
- 2) слайсинг
- 3) репарация
- 4) репликация
- 5) инициация
- 67. Сплайсинг это
- 1) процесс сшивки экзонов
- 2) процесс вырезания экзонов
- 3) процесс вырезания интронов
- 4) процесс удаления поврежденных участков ДНК
- 68. Трансляция состоит из этапов

1) инициации, элонгации, терминации

- 2) инициации, процессинга, терминации
- 3) инициации, процессинга, слайсинга
- 4) инициации, слайсинга, терминации
- 5) инициации, этонгации, слайсинга
- 69. Активирование аминокислот во время трансляции всегда начинается с аминокислоты
- 1) метионин
- 2) аланин
- 3) серин
- 4) аспарагин
- 5) аргенин
- 70. Старт кодон
- AУΓ
- 2) УГЦ
- 3) УГУ
- **4)** ΑΓΥ
- 5) АУЦ
- 71. Старт- кодон кодирует аминокислоту
- 1) метионин
- 2) цистеин
- 3) глутамин
- 4) аспарагин
- 5) глицин
- 72. В малой субъединице рибосомы находятся центры
- 1) аминоацильный и пептидильный
- 2) аминоацильный и терминальный
- 3) пептидильный и терминальный
- 4) конформационный и терминальный
- 5) аминоацильный и конформационный
- 73. Аминоацил-т-РНК связывается с

1) аминоацильным центром большой субъединицы рибосомы

2) аминоацильным центром малой субъединицы рибосомы

- 3) пептидильным центром малой субъединицы рибосрмы
- 4) пептидильным центром большой субъединицы рибосомы
- 5) аминоацильным центром на мембране ЭПС
- 74. Соединение субъединиц рибосомы происходит в присутствии ионов
- 1)**Mg**
- 2) Ca
- 3)Na
- 4)S
- 5)Fe
- 75. Аминоацил-т-РНК-синтетаза это

1) фермент, катализирующий образование комплекса аминоацил-т-РНК

- 2) комплекс активированной аминокислоты и т-РНК
- 3) фермент, катализирующий связывание комплекса аминоацил- т- РНК с аминоацильным центром в малой субъединице рибосомы
- 4) фермент, катализирующий образование пептидной связи между молекулами аминокислот в большой субъединице рибосомы
- 5) фермент, катализирующий синтез белковой цепи
- 76. Антикодон это

1) последовательность рибонуклеотидов в центральной петле т-РНК, комплементарная кодону м-РНК

- 2) последовательность рибонуклеотидов м-РНК, находящаяся в пептидильном центре
- 3) последовательность рибонуклеотидов м-РНК, находящаяся в аминоацильном центре
- 4) последовательность рибонуклеотидов т-РНК, комплементарная аминокислоте
- 5) специфическая последовательность рибонуклеотидов боковой петли т-РНК
- 77. Соединение аминокислоты и т-РНК происходит в присутствии

1) фермента аминоацил-т-РНК-синтетазы

- 2) фермента аминоацил-т-РНК-лигазы
- 3) фермента аминоацил-т-РНК-рестриктазы
- 4) фермента аминоацил-т-РНК-полимеразы
- 5) инициирующего комплекса
- 78. Пептидилтрансфераза это фермент, катализирующий

1) образование пептидной связи между аминокислотами

- 2) связывание т-РНК с рибосомой
- 3) связывание аминкислоты с т-РНК
- 4) образование пептидной связи между мононуклеотидами
- 5) образование связи между т-РНК и м-РНК
- 79. Элонгация это

1) продолжение синтеза белковой цепи

- 2) окончание синтеза белковой цепи
- 3) начало синтеза белковой цепи
- 4) начальная стадия транскрипции
- 5) начальная стадия трансляции
- 80. Транслокация это

1) перемещение рибосомы вдоль м-РНК

- 2) объединение частей рибосомы
- 3) перемещение большой субъединицы рибосомы относительно малой
- 4) перемещение м-РНК по рибосоме
- 5) разъединение субъединиц рибосомы
- 81. Пептидная связь возникает между

1) аминокислотами, находящимися в аминоацильном и пептидильном центрах рибосомы

- 2) аминокислотами, находящимися в малой субъединице рибосомы
- 3) аминокислотами, находящимися в аминоацильном центре рибосомы
- 4) аминокислотами, находящимися в пептидильном центре рибосомы
- 5) мононуклеотидами в ядре
- 82. Терминация это
- 1) окончание синтеза белковой цепи
- 2) отделение т-РНК от аминокислоты
- 3) отделение т-РНК от пептида
- 4) разъединение субъединиц рибосомы
- 5) естественная смерть клетки
- 83. Элонгация продолжается до

1) поступления в аминоацильный центр терминирующего кодона или окончания последовательности нуклеотидов м-РНК

- 2) разъединения субъединиц рибосомы
- 3) исчерпания запаса аминокислот в цитоплазме
- 4) поступления в аминоацильный центр инициирующего кодона
- 5) исчерпания запаса т-РНК в цитоплазме
- 84. Факторы терминации

1) вызывают отделение «завершенного» пептида от пептидильного центра

- 2) вызывают досрочное окончание трансляции
- 3) вызывают прекращение транскрипции
- 4) приводят к нарушению структуры м-РНК
- 5) препятствуют образованию комплекса аминоацил-т-РНК
- 85. Результат инициации это
- 1) объединение частей рибосомы
- 2) присоединение и-РНК к малой субъединице рибосомы
- 3) прекращение транскрипции
- 4) образование первичной структуры белка
- 5) завершение синтеза белковой молекулы
- 86. Стоп кодоны
- 1) УАГ, УГА, УАА
- 2) АУГ, УАГ, УГА
- 3) АУЦ, АУГ, УГА
- 4) УУУ, УАА, УГА
- 5) АЦУ, АУУ, УАА

БЛОК В. "БИОСИНТЕЗ БЕЛКА "

- 1. При инициации транскрипции к промотору присоединяется
- 1)ТАТА-фактор
- 2) p-PHK
- 3) рибосома
- 4) пептидилтрансфераза
- 2. РНК-полимераза Шотвечает за синтез
- 1) пре-тРНК
- 2) пре-мРНК
- 3) пре-рРНК
- 4) всех видов РНК
- 3. М-РНК присоединяется к малой субъединице рибосомы в присутствии
- 1) ионов Мg2+
- 2) Ca2+
- 3) РНК-полимеразы
- 4) аминоацил-РНК-синтетаз
- 4. Результат инициации при трансляции

1) соединение частей рибосомы

- 2) образование м-РНК
- 3) бразование и-РНК
- 4) активирование аминокислот
- 5. Для терминации в процессе трансляции характерны события
- 1) отщепление синтезированного полипептида от Т-РНК
- 2) присоединение к м-РНК субъединиц рибосомы и т-РНК-Мет
- 3) образование функционально активных белков в результате модификаций
- 4) связывание аминоацил-Т-РНК в А-центре рибосомы
- 6. Нуклеотидный состав ДНК: -АТТ-ГЦГ-ТАТ-, определите нуклеотидный состав иРНК
- 1) УАА-ЦГЦ-АУА
- 2) УАА-ЦГЦ-АТА
- 3) ТАА-ЦГЦ-УТА
- 4) ТАА-ГЦГ-УТУ
- 7. Свойство генетического кода «специфичность» означает
- 1) каждый триплет соответствует одной аминокислотуе
- 2) одну аминокислоту могут кодировать несколько триплетов
- 3) последовательность кодонов в зрелой м-РНК соответствует последовательности аминокислот в белке
- 4) три нуклеотидных остатка кодируют одну аминокислоту
- 8. Свойство генетического кода «коллинеарность» означает

1) последовательность кодонов в зрелой м-РНК соответствует последовательности аминокислот в белке

- 2)одну аминокислоту могут кодировать несколько триплетов
- 3) каждый триплет кодирует только одну аминокислоту
- 4) три нуклеотидных остатка кодируют одну аминокислоту
- 9. Свойство генетического кода «вырожденность» означает
- 1) одну аминокислоту могут кодировать несколько триплетов

- 2) каждый триплет кодирует только одну аминокислоту
- 3) последовательность кодонов в зрелой м-РНК соответствует последовательности аминокислот в белке
- 4) три нуклеотидных остатка кодируют одну аминокислоту
- 10. РНК-полимераза I отвечает за синтез

1) пре-рРНК

- 2) пре-мРНК
- 3) всех видов РНК
- 4) пре-тРНК
- 11. За синтез пре-рРНК у эукариот отвечает

1) РНК-полимеразаІ

- 2) РНК- полимераза II
- 3) РНК- полимераза III
- 4) все РНК-полимеразы
- 12. За синтез пре-тРНК у эукариот отвечает

1) РНК- полимераза III

- 2) РНК- полимераза II
- 3) РНК-полимераза І
- 4) все РНК-полимеразы
- 13. За синтез пре-мРНК у эукариот отвечает

1) РНК- полимераза II

- 2) РНК-полимераза І
- 3) РНК- полимераза III
- 4) все РНК-полимеразы
- 14. Одна РНК-полимераза отвечает за синтез всех видов РНК у
- 1) бактерий
- 2) грибов
- 3) растений
- 4) животных
- 15. Одна РНК-полимераза отвечает за синтез всех видов РНК у
- 1) кишечной палочки
- 2) дизентерийной амебы
- 3) кишечного балантидия
- 4) малярийного плазмодия
- 16. Процесс транскрипции
- 1) протекает при участии ТАТА -фактор
- 2) начинается с кодона АУГ
- 3) происходит при полном раскручивании ДНК
- 4) начинается с синтеза праймера
- 17. Активизированная аминокислота присоединяется к т-РНК с помощью

1) аминоацил-т-РНК-синтетазы

- 2) ATΦ
- 3) пептидилтрансферзы

- 4) ионов Мg₂₊
- 18. Первый кодон на зрелой м-РНК
- 1) УАГ
- 2) YAA
- УГА
- 4) ΑУΓ
- 19. Первый кодон на зрелой м-РНК у эукариот кодирует аминокислоту
- 1) метионин
- 2) формилметионин
- 3) аланин
- 4) пистеин
- 20. Созревание пре-мРНК происходит в результате

1) полиаденилирования 3'-конца

- 2) присоединение гуанозинтрифосфата к 3'-концу
- 3) вырезания экзонов
- 4) кэпирования 3'-конца
- 21. Созревание пре-мРНК происходит в результате

1) кэпирования 5'-конца

- 2) присоединение гуанозинтрифосфата к 3'-концу
- 3) вырезания экзонов
- 4) полиаденилирования 5'-конца
- 22. Созревание пре-мРНК происходит в результате

1) присоединение гуанозинтрифосфата к 5'-концу

- 2) кэпирования 3'-конца
- 3) полиаденилирования 5'-конца
- 4) вырезания экзонов
- 23. Созревание пре-мРНК происходит в результате
- 1) сшивание экзонов
- 2) кэпирования 3'-конца
- 3) полиаденилирования 5'-конца
- 4) присоединение гуанозинтрифосфата к 3'-концу
- 24. Сплайсинг это
- 1) сшивание экзонов
- 2) кэпирования 3'-конца
- 3) полиаденилирования 5'-конца
- 4) присоединение гуанозинтрифосфата к 3'-концу
- 25. В образовании первичной структуры белка участвуют связи
- 1) пептидные
- 2) ионные
- 3) водородные
- 4) дисульфидные
- 26. В образовании вторичной структуры белка участвуют, в основном, связи
- 1) водородные

- 2) пептидные
- 3) ионные
- 4) дисульфидные
- 27. Конфигурация молекулы белка в виде спирали это структура
- 1) вторичная
- 2) первичная
- 3) третичная
- 4) четвертичная
- 28. Один триплет ДНК несет информацию о
- 1) аминокислоте, включаемой в белковую цепь
- 2) последовательности аминокислот в молекуле белка
- 3) месте определенной аминокислоты в белковой цепи
- 4) признаке конкретного организма
- 29. Кэпирования 5'-конца РНК относится к процессу
- 1) созревания м-РНК
- 2) траскрипции
- 3) трансляции
- 4) репликации
- 30. Присоединение гуанозинтрифосфата к 5'-концу относится к процессу
- 1) созревания м-РНК
- 2) трансляции
- 3) транскрипции
- 4) репарации
- 31. Полиаденилирование 3'-конца РНК относится к процессу
- 1) созревания
- 2) репарации
- 3) трансляции
- 4) транскрипции
- 32. Сшивание экзонов РНК относится к процессу
- 1) созревания
- 2) трансляции
- 3) редупликации
- 4) транскрипции
- 33.В процессе транскрипции при инициации РНК- полимераза связывается с
- 1) промотором
- 2) p-PHK
- 3) рибосомой
- 4) оператором
- 34. РНК-полимераза в начале транскрипции связывается с
- 1) промотором
- 2) т-РНК
- 3) p-PHK
- 4) рибосомой

- 35. Нуклеотидный состав РНК ЦГГ- ГЦУ- АГА- определите нуклеотидный состав соответствующего участка ДНК
- 1) ГЦЦ- ЦГА-ТЦТ
- 2) ГЦЦ- ЦГА- УТУ
- 3) ГЦЦ-ЦГА-ТАТ
- 4) ТАА-ГЦГ-УТУ
- 36. В процессе трансляции инициирующий кодон выполняет функцию
- 1) участвует в сборке рибосомы на м-РНК
- 2) формирует Р-центр рибосомы
- 3) катализирует образование пептидной связи
- 4) участвует в процессе элонгации
- 37. К терминирующим кодонам относится
- **1) УΓΑ**
- 2) УУА
- 3) УАУ
- 4) АУГ
- 38. Стоп-кодоном является
- 1) YAA
- 2) ΑУΓ
- 3) УУА
- **4**) УАУ
- 39. Терминирующим кодоном является
- 1) УАГ
- 2) УУА
- 3) YAY
- 4) АУГ
- 40. РНК-полимераза кишечной палочки отвечает за синтез
- 1) всех видов РНК
- 2) пре-тРНК
- 3) пре-мРНК
- 4) пре-рРНК
- 41. Процесс транскрипции это ...
- 1) переписывание генетической информации
- с ДНК на и-РНК
- 2) непосредственный синтез белка
- 3) перевод кодонов и-РНК в аминокислоты
- 4) переписывание генетической информации с и-РНК на молекулу белка
- 42. Сайленсер это
- 1) участок ДНК, замедляющий транскрипцию
- 2) участок ДНК, ускоряющий транскрипцию
- 3) участок ДНК, к которому присоединяется РНК-полимераза
- 4) ДНК-связывающий белок

- 43. Энергия АТФ используется в ходе трансляции на стадии
- 1) связывания аминокислоты с т-РНК
- 2) элонгации
- 3) образования пептидной связи
- 4) терминации
- 44. Образование пептидной связи катализирует
- 1) пептидилтрансфераза
- 2) ааТРНК-синтетаза
- 3) промотор
- 4) геликаза
- 45. Антибиотик рифамицин

1) связывается с РНКП бактерий, ингибирует транскрипцию

- 2) связывается с 50-S субъединицей рибосомы, блокируя транскрипцию
- 3) связывается с 30-S субъединицей рибосомы, блокируя транскрипцию
- 4) вызывает хромосомные разрывы и фрагментацию ДНК
- 46. Матрица для синтеза т-РНК
- 1) ДНК
- 2) и-РНК
- 3) м-РНК
- 4) p-PHK
- 47. Антибиотик эритромицин
- 1) связывается с 50-S субъединицей рибосомы, блокирует транскрипцию
- 2) присоединяется к 30-S субъединие рибосомы, ингибирует связывани
- 3) связывается с РНКП бактерий, ингибирует транскрипцию
- 4) вызывает хромосомные разрывы и фрагментацию ДНК
- 48. Свойство генетического кода «триплетность» означает
- 1) три нуклеотидных остатка кодируют одну аминокислоту
- 2) каждый триплет кодирует только одну аминокислоту
- 3) одну аминокислоту могут кодировать несколько триплетов
- 4) последовательность кодонов в зрелой м-РНК соответствует последовательности аминокислот в белке
- 49. Синтез белка заканчивается когда, на рибосоме появляется кодон
- УΑΓ
- 2) УУА
- 3) YAY
- **4) Α**ΥΓ
- 50. Нуклеотидный состав ДНК: ТАТ-АТТ-ГЦГ, определите нуклеотидный состав иРНК

1) АУА- УАА -ЦГЦ

- 2) АТА-ТАА-ЦГЦ
- 3) УАУ- УТТ-ЦГЦ
- 4) УАУ-УАА-ЦГЦ
- 51. Субъединица РНК -полимеразы, отвечающая за связь с промоторным участком
- 1) сигма
- 2) альфа

- 3) бета
- 4) бета'
- 52. За связь с промотором отвечает субъединица РНК -полимеразы
- сигма
- 2) альфа
- 3) альфа'
- 4) бета
- 53. Антибиотик тетрациклин
- 1) присоединяется к 30-S субъединие рибосомы, ингибирует связывание
- 2) связывается с 50-S субъединицей рибосомы, блокирует транскрипцию
- 3) связывается с РНКП бактерий, ингибирует транскрипцию
- 4) вызывает хромосомные разрывы и фрагментацию ДНК
- 54. Действие антибиотика тетрациклина основано на
- 1) присоединении к 30-S субъединие рибосомы, ингибируя связывание
- 2) связывании с 50-S субъединицей рибосомы, блокируя транскрипцию
- 3) связывании с РНКП бактерий, ингибируя транскрипцию
- 4) хромосомных разрывах и фрагментации ДНК
- 55. Действие антибиотика эритромицина основано на
- 1) связывании с 50-S субъединицей рибосомы, блокируя транскрипцию
- 2) присоединении к 30-S субъединие рибосомы, ингибируя связывани
- 3) связывании с РНКП бактерий, ингибируя транскрипцию
- 4) хромосомных разрывах и фрагментации ДНК
- 56. Действие антибиотика рифамицина основано на
- 1) связывании с РНКП бактерий, ингибирует транскрипцию
- 2) связываении с 50-S субъединицей рибосомы, блокируя транскрипцию
- 3) связывании с 30-S субъединицей рибосомы, блокируя транскрипцию
- 4) хромосомных разрывах и фрагментации ДНК
- 57. К первому кодону м-РНК в трансляции подходит т-РНК с антикодоном
- 1) УАЦ
- AУΓ
- 3) ΥΓΑ
- 4) ΥΑΓ
- 58. Стартовым кодоном м-РНК в трансляции является
- АУГ
- 2) УАЦ
- 3) УАГ
- 4) УΓΑ
- 59. Этап элонгации в процессе трансляции включает
- 1) включение аминоацил-т-РНК в А-центр
- 2) сборку рибосомы
- 3) гидролиз АТФ
- 4) узнавание кодона м-РНК
- 60. В элонгации участвует фермент

- 1) пептидилтрансфераза
- 2) РНК-полимераза
- 3) ДНК-полимераза
- 4) амино-ацил-тРНКсинтетаза
- 61. Транскриптон это
- 1) фрагмент ДНК, ограниченный промотором и терминатором
- 2) последовательность ДНК, с которой связывается РНКП
- 3) фрагмент ДНК, ускоряющий процесс
- 4) последовательность ДНК, на которой завершается синтез РНК
- 62. Инициация в процессе транскрипции связана с ферментом

1) РНК-полимераза

- 2) ДНК-полимераза
- 3) амино-ацил-тРНКсинтетаза
- 4) пептидилтрансфераза
- 63. Инициация в процессе трансляции связана с ферментом

1) амино-ацил-тРНКсинтетаза

- 2) РНК-полимераза
- 3) ДНК-полимераза
- 4) пептидилтрансфераза
- 64. В процессе трансляции активирование аминокислот в цитоплазме происходит в результате взаимодействия аминокислот с
- 1) ATΦ
- 2) РНК-полимеразой
- 3) аминоацил-т-РНК-синтетазой
- 4) т-РНК
- 65. Энхансер это
- 1) участок ДНК, ускоряющий транскрипцию
- 2) участок ДНК, замедляющий транскрипцию
- 3) участок ДНК, к которому присоединяется РНК-полимераза
- 4) ДНК-связывающий белок
- 66. Участок ДНК, замедляющий транскрипцию
- 1) сайленсер
- 2) энхансер
- 3) промотор
- 4) оператор
- 67. Участок ДНК, ускоряющий транскрипцию
- 1) энхансер
- 2) сайленсер
- 3) оператор
- 4) терминатор
- 68. Участок ДНК, к которому присоединяется РНК-полимераза
- 1) промотор
- 2) оператор

- 4) оператор
- 3) энхансер
- 4) сайленсер
- 69. Участок ДНК, сигнализирующий об окончании элонгации
- 1) терминатор
- 2) энхансер
- 3) сайлерсер
- 4) оператор
- 70. У прокариот участок ДНК, ограниченный промотором и терминатором
- 1) оперон
- 2) цистрон
- 3) структурный ген
- 71. Большинство белков работают в структуре

1) третичной

- 2) первичной
- 3) вторичной
- 4) четвертичной
- 72. В конце трансляции рибосому покидает белок в структуре

1) первичной

- 2) вторичной
- 3) третичной
- 4) четвертичной
- 73. Количество разновидностей т-РНК, синтезируемых в процессе транскрипции

1) 20

- 2) 60
- 3) 90
- 4) 120
- 74. Процессинг в биосинтезе белка НЕ характерен для

1) бактерий

- 2) растений
- 3) грибов
- 4) животных
- 75. Процессинг происходит
- 1) в ядре
- 2) на рибосомах
- 3) в ЭПС
- 4) в цитоплазме
- 76. Созревание м-РНК происходит

в ядре

- 2) на рибосомах
- 3) в ЭПС
- 4) в цитоплазме
- 77. Процесс созревания м-РНК НЕ происходит у

1) бактерий

- 2) животных
- 3) растений
- 4) грибов
- 78. Экзоны это

1) информативные участки и-РНК

- 2) неинформативные участки и-РНК
- 3) участки ДНК, ускоряющие транскрипцию
- 4) участки ДНК, замедляющие транскрипцию
- 79. Интроны это

1) неинформативные участки и-РНК

- 2) информативные участки и-РНК
- 3) участки ДНК, ускоряющие транскрипцию
- 4) участки ДНК, замедляющие транскрипцию
- 80. Фермент, участвующий в стадии элонгации процесса трансляции

1) пептидилтрансфераза

- 2) РНК-полимераза
- 3) ДНК-полимераза
- 4) геликаза

Блок Г "Жизненный цикл клетки. "

- 1. При полуконсервативном способе репликации ДНК образуется
- 1) молекула ДНК, состоящая из одной материнской цепи и другой новой дочерней
- 2) одна двухцепочечная молекула ДНК исходная, а другая вновь синтезированная
- 3) множество коротких фрагментов ДНК, которые затем соединяются с образованием двух новых молекул ДНК
- 4) молекула ДНК, в которой часть фрагментов старых, а часть вновь интезированных
- 2. При консервативном способе репликации ДНК образуется

1) одна двухцепочечная молекула ДНК исходная, а другая вновь синтезированная

- 2) молекула ДНК, состоящая из одной материнской цепи и другой новой дочерней
- 3) множество коротких фрагментов ДНК, которые затем соединяются с образованием двух новых молекул ДНК
- 4) молекула ДНК, в которой часть фрагментов старых, а часть вновь интезированных
- 3. При дисперсном способе репликации ДНК образуется

1) множество коротких фрагментов ДНК, которые затем соединяются с образованием двух новых молекул ДНК

- 2) молекула ДНК, в которой часть фрагментов старых, а часть вновь интезированных
- 3) молекула ДНК, состоящая из одной материнской цепи и другой новой дочерней
- 4) одна двухцепочечная молекула ДНК исходная, а другая вновь синтезированная
- 4. Молекула ДНК, состоящая из одной материнской цепи и другой новой дочерней цепи образуется при репликации ДНК

1) полуконсервативным способом

- 2) консервативным способом
- 3) дисперсным способом
- 4) синаптонемальным способом

- 5. Одна двухцепочечная молекула ДНК исходная, а другая вновь синтезированная образуется при репликации ДНК
- 1) консервативным способом
- 2) дисперсным способом
- 3) синаптонемальным способом
- 4) полуконсервативным способом
- 6.Образуетсямножество коротких фрагментов ДНК, которые затем соединяются с образованием двух новых молекул ДНК при способе репликации

1) дисперсном

- 2) синаптонемальном
- 3) полуконсервативном
- 4) консервативном
- 7. При полуконсервативном способе репликации ДНК матрицей является

1) две нити ДНК

- 2) одна нить ДНК
- 3) фрагменты нитей ДНК
- 4) нить РНК
- 8. При консервативном способе репликации ДНК матрицей является

1) две нити ДНК

- 2) одна нить ДНК
- 3) фрагменты нитей ДНК
- 4) нить РНК
- 9. При дисперсном способе репликации ДНК матрицей является

1) фрагменты нитей ДНК

- 2) две нити ДНК
- 3) одна нить ДНК
- 4) нить РНК
- 10. При полуконсервативном способе репликации ДНК основным ферментом катализирующим процесс является

1) ДНК - полимераза

- 2) ДНК- топоизомераза
- 3) ДНК- геликаза (хеликаза)
- 4) ДНК- праймаза
- 11. Изменяют степень сверхспирализации ДНК при репликации полуконсервативным способом ферменты

1) ДНК- топоизомеразы

- 2) ДНК- геликазы (хеликазы)
- 3) ДНК- праймазы
- 4) ДНК- полимеразы
- 12. Ферменты разрушающие водородные связи и разделяющие цепи двухцепочечной ДНК на одинарные цепи при репликации ДНК полуконсервативным способом

1) ДНК- геликазы (хеликазы)

- 2) ДНК топоизомеразы
- 3) ДНК- праймазы

- 4) ДНК- полимеразы
- 13. Ферменты синтезирующие короткие фрагменты РНК- затравки при репликации ДНК полуконсервативным способом
- 1) ДНК- праймазы
- 2) ДНК топоизомеразы
- 3) ДНК геликазы (хеликазы)
- 4) ДНК- полимеразы
- 14. Ферменты катализирующие сшивание одноцепочечных фрагментов ДНК при репликации полуконсервативным способом
- 1) ДНК лигазы
- 2) ДНК- геликазы (хеликазы)
- 3) ДНК топоизомеразы
- 4) ДНК- полимеразы
- 15. Ферменты восстанавливающие недорепликационные 5 концы новых цепей ДНК после удаления РНК затравки при репликации полуконсервативным способом
- 1) ДНК теломеразы
- 2) ДНК- топоизомеразы
- 3) ДНК- геликазы (хеликазы)
- 4) ДНК- лигазы
- 16. ДНК- топоизомеразы при репликации ДНК полуконсервативным способом
- 1) изменяют степень сверхспирализации ДНК
- 2) разрушают водородные связи и разделяют нити двухцепочечной ДНК на одинарные цепи
- 3) катализируют сшивание одноцепочечных фрагментов ДНК
- 4) восстанавливают недорепликационные 5 концы новых цепей ДНК после удаления РНК затравки
- 17. ДНК- геликазы (хеликазы) при репликации ДНК полуконсервативным способом
- 1) разрушают водородные связи и разделяют нити двухцепочечной ДНК на одинарные цепи
- 2) изменяют степень сверхспирализации ДНК
- 3) катализируют сшивание одноцепочечных фрагментов ДНК
- 4) восстанавливают недорепликационные 5 концы новых цепей ДНК после удаления РНК затравки
- 18. ДНК- лигазы при репликации ДНК полуконсервативным способом
- 1) катализируют сшивание одноцепочечных фрагментов ДНК
- 2) разрушают водородные связи и разделяют нити двухцепочечной ДНК на одинарные цепи
- 3) изменяют степень сверхспирализации ДНК
- 4) восстанавливают недорепликационные 5 концы новых цепей ДНК после удаления РНК затравки
- 19. ДНК теломеразы при репликации ДНК
- 1) восстанавливают недорепликационные 5 концы новых цепей ДНК после удаления РНК затравки
- 2) разрушают водородные связи и разделяют нити двухцепочечной ДНК на одинарные цепи

- 3) изменяют степень сверхспирализации ДНК
- 4) катализируют сшивание одноцепочечных фрагментов ДНК
- 20. ДНК- прймазы при репликации ДНК полуконсервативным способом

1) катализируют сшивание одноцепочечных фрагментов ДНК

- 2) синтезируют короткие фрагменты РНК затравки
- 3) изменяют степень сверхспирализации ДНК
- 4) восстанавливают недорепликационные 5 концы новых цепей ДНК после удаления РНК затравки
- 21. ДНК- полимераза І при репликации ДНК у прокариот

1) действует на запаздывающей цепи для удаления РНК- праймеров и дорепликации очищенных мест ДНК

- 2) участвует исключительно в процессе репарации ДНК
- 3) является основным ферментом репликации ДНК
- 4) изменяет степень сверхспирализации ДНК
- 22. ДНК- полимераза ІІпри репликации ДНК у прокариот

1) участвует исключительно в процессе репарации ДНК

- 2) действует на запаздывающей цепи для удаления РНК праймеров и дорепликации очищенных мест ДНК
- 3) является основным ферментом репликации ДНК
- 4) изменяет степень сверхспирализации ДНК
- 23. ДНК- полимераза III при репликации ДНК у прокариот

1) является основным ферментом репликации ДНК

- 2) действует на запаздывающей цепи для удаления РНК- праймеров и дорепликации очищенных мест ДНК
- 3) участвует исключительно в процессе репарации ДНК
- 4) изменяет степень сверхспирализации ДНК
- 24. Результатинициации репликации ДНК

1) формирование репликационной вилки и синтез РНК-праймера

- 2) связывание с каждой точкой "origin" специальных узнающих белков
- 3) соединение субъединиц рибосомы
- 4) образование репликационного глазка
- 25. Результат элонгации репликации ДНК

1) удлинение дочерних цепей ДНК

- 2) связывание с каждой точкой "origin" специальных узнающих белков
- 3) соединение субъединиц рибосомы
- 4) образование репликационного глазка
- 26. Ферменты терминации репликации ДНК сшивающие соседние фрагменты ДНК

1) ДНК - лигазы

- 2) ДНК- топоизомеразы
- 3) ДНК- геликазы (хеликазы)
- 4) ДНК- теломеразы
- 27. "Решение" о вступлении клетки в деление происходит в

1) пресинтетический период интерфазы

2) синтетический период интерфазы

- 3) постсинтетический период интерфазы
- 4) период деления клетки
- 28. ДНК- теломераза восстанавливает длину теломерных отделов ДНК при репликации ДНК в период

1) терминации

- 2) элонгации
- 3) инициации
- 4) подготовки к инициации
- 29. ДНК- лигаза сшивает соседние фрагменты ДНК при репликации ДНК в период

1) терминации

- 2) элонгации
- 3) инициации
- 4) подготовки к инициации
- 30. Результат пресинтетического периода интерфазы

1) вхождение в точку рестрикции

- 2) репликация ДНК
- 3) редупликация центриолей
- 4) образование нитей веретена деления
- 31. Хромосомы становятся двухроматидные в период интерфазы

1) синтетический

- 2) пресинтетический
- 3) постсинтетический
- 4) прохождения точки рестрикции
- 32. Накопление энергии АТФ происходит в

1) течение всех периодов интерфазы

- 2) пресинтетический период интерфазы
- 3) синтетический период интерфазы
- 4) постсинтетический период интерфазы
- 33. У прокариот при репликации ДНК формируется

1) одна точка "origin"

- 2) две точки "origin"
- 3) три точки "origin"
- 4) множество точек "origin"
- 34. У эукариот при репликации ДНК формируется

1) множество точек "origin"

- 2) одна точка "origin"
- 3) две точки "origin"
- 4) три точки "origin"
- 35. Множество точек "origin" у эукариот

1) ускоряет процесс репликации

- 2) усиливает напряжение в нитях ДНК
- 3) ускоряет процесс разрыва водородных связей между нитями ДНК
- 4) облегчает образование праймеров

36. Репликация в каждом "origin" прокариот идет

1) в двух направлениях

- 2) в одном направлении
- 3) в нескольких направлениях
- 4) фрагментами
- 37. Ssb- белки при репликации ДНК

1) связываются электростатически с однонитчатой ДНК, выпрямляя ее и блокируя образование шпилечных двухнитчатых структур

- 2) связываются ковалентными связями с однонитчатой ДНК, выпрямляя ее и блокируя образование шпилечных двухнитчатых структур
- 3) связываются электростатически с двунитчатой ДНК, выпрямляя ее и блокируя образование шпилечных двухнитчатых структур
- 4) связываются электростатически с двунитчатой ДНК, изгибая ее и активируя образование шпилечных двухнитчатых структур
- 38. ДНК-праймаза активируется и образует комплекс с ферментом

1) ДНК- геликазой (хеликазой)

- 2) ДНК топоизомеразой
- 3) ДНК- праймазой
- 4) ДНК- полимеразой
- 39. Репликасома это

1) комплекс ферментов репликации

- 2) комплекс ферментов инициации репликации
- 3) комплекс ферментов элонгации репликации
- 4) комплекс ферментов терминации репликации
- 40. Комплекс ферментов репликации это

1) репликасома

- 2) транслокасома
- 3) элангосома
- 4) инициасома
- 41. α-ДНК полимераза при репликации ДНК

1) включает д-нуклеотиды в строящуюся полинуклеотидную цепь

- 2) корректирует ошибку репликации
- 3) заполняет бреши, оставшиеся после удаления РНК-затравки
- 4) удаляет РНК-праймеры
- 42. β ДНК полимераза при репликации ДНК

1) заполняет бреши, оставшиеся после удаления РНК-затравки

- 2) включает д-нуклеотиды в строящуюся полинуклеотидную цепь
- 3) корректирует ошибку репликации
- 4) удаляет РНК-праймеры
- 43. δ- ДНК полимераза при репликации ДНК

1) корректирует ошибку репликации

- 2) включает д нуклеотиды в строящуюся полинуклеотидную цепь
- 3) заполняет бреши, оставшиеся после удаления РНК-затравки
- 4) удаляет РНК-праймеры

44. Включает д-нуклеотиды в строящуюся полинуклеотидную цепь при репликации ДНК у эукариот фермент

1) а-ДНК полимераза

- 2) β ДНК полимераза
- 3) δ- ДНК полимераза
- 4) µ- ДНК полимераза
- 45. Заполняет бреши, оставшиеся после удаления РНК-затравки при репликации ДНК у эукариот фермент

1) β - ДНК полимераза

- 2) а ДНК полимераза
- 3) δ- ДНК полимераза
- 4) µ- ДНК полимераза
- 46. Корректирует ошибку репликации у эукариот фермент

1) δ - ДНК полимераза

- 2) α-ДНК полимераза
- 3) β ДНК полимераза
- 4) µ- ДНК полимераза
- 47. Клетка увеличивается в размерах в интерфазу периода

1) пресинтетического

- 2) синтетического
- 3) постсинтетического
- 4) прохождения точки рестрикции
- 48. Достижение критической массы цитоплазмы при репликации ДНК достигается в период интерфазы

1) постсинтетический

- 2) пресинтетический
- 3) синтетический
- 4) прохождения точки рестрикции
- 49. Достижение критической массы ядра при репликации ДНК достигается в период интерфазы

1) постсинтетический

- 2) пресинтетический
- 3) синтетический
- 4) прохождения точки рестрикции
- 50. Продолжительность прохождения периодов жизненного цикла у клеток определяется

1) типом клеток, размерами, расположением в организме

- 2) типом клеток
- 3) размерами
- 4) расположением в организме
- 51. Синтез белков тубулина начинается в период интерфазы

1) постсинтетический

- 2) пресинтетический
- 3) синтетический
- 4) прохождения точки рестрикции

52. Достижение клеткой критической массы цитоплазмы и ядра происходит в период интерфазы

1) постсинтетический

- 2) пресинтетический
- 3) синтетический
- 4) прохождения точки рестрикции
- 53. Точки рестрикции в жизненном цикле клетки это

1) точки, после прохождения которых, наступление последующих событий становится необратимым

- 2) точки, после прохождения которых, наступление последующих событий ускоряется
- 3) точки, после прохождения которых, наступление последующих событий замедляется
- 4) точки, после прохождения которых, наступает редупликация ДНК
- 54. В жизненном цикле клетки выделяют точки рестрикции

1) четыре

- 2) одну
- 3) две
- 4) три
- 55. Первая точка рестрикции в жизненном цикле клетки находится в

1) пресинтетическом периоде интерфазы (точка R)

- 2) синтетическом периоде интерфазы (точка S)
- 3) постсинтетическом периоде интерфазы (точка G2)
- 4) периоде деления митозе
- 56. В регуляции клеточного цикла принимают участие экзогенные факторы

1) прикрепление клетки к внеклеточному матриксу

- 2) гормоны
- 3) интерлейкины
- 4) факторы роста
- 57. В регуляции клеточного цикла принимают участие эндогенные факторы
- 1) интерлейкины, гормоны, факторы роста
- 2) контактное торможение пролиферации
- 3) прикрепление клетки к внеклеточному матриксу
- 4) факторы роста
- 58. Генетический фактор регуляции митотического цикла

1) протоонкогены

- 2) интерлейкины
- 3) факторы роста
- 4) гормоны
- 59. Протоонкогены акселераторы

1) стимулируют митоз и контролируют нормальное клеточное деление

- 2) подавляют митотическую активность
- 3) дифферентны к клеточному делению
- 4) полностью тормозят клеточное деление
- 60. Молекулы киназы белки, регулирующие митотический цикл состоят из

1) одной неактивной субъединицы

- 2) одной активной субъединицы
- 3) двух активных субъединиц
- 4) двух неактивных субъединиц
- 61. Для активации молекулы киназы необходимо ее связывание с белком

1) циклином

- 2) интерлейкином
- 3) убиквитином
- 4) убихиноном
- 62. В активном комплексе "циклин-киназа" роль циклина

1) активаторная

- 2) рецепторная
- 3) каталитическая
- 4) адапторная
- 63. В активном комплексе "циклин-киназа" роль киназы

1) каталитическая

- 2) рецепторная
- 3) активаторная
- 4) адапторная
- 64. Активная форма циклинзависимой протеинкиназы

1)"циклин-киназа"

- 2) циклин В
- 3) киназа 1
- 4) киназа 2
- 65. Для каждого периода митотического цикла характерно

1) свое специфическое сочетание циклинов и киназ

- 2) общее для всех сочетание циклинов и киназ
- 3) сочетание киназ и циклинов всегда постоянное
- 4) отсутствие киназ и присутствие циклинов
- 66. После митоза первым на действие фактора роста в клетке синтезируется белок

1) циклин D

- 2) циклин А
- 3) циклин В
- 4) циклинЕ
- 67. В S периоде интерфазы участвуют циклины

1) циклин В и А

- 2) циклин А
- 3) циклинЕ
- 4) циклин D
- 68. Во второй половине G1

интерфазы участвуют циклины

1) циклин Е

- 2) циклин В
- 3) циклин А
- 4) циклин D

- 69. Образование митозстимулирующего фактора (МСФ) происходит в период
- 1) постсинтетический
- 2) синтетический
- 3) пресинтетический
- 4) деления клетки митозом
- 70. В образование митозстимулирующего фактора (МСФ) ведущую роль играет
- 1) циклин В
- 2) циклин А
- 3) циклин Е
- 4) циклин D

Блок Д "Энергетический обмен"

- 1. Энергетический обмен включает в себя следующие этапы
- 1) подготовительный, анаэробный, аэробный
- 2) подготовительный, гликолиз, цикл Кребса
- 3) подготовительный, анаэробный, цикл Кальвина
- 4) подготовительный, гликолиз, окислительное фотофосфорилирование
- 2. Аэробный этап энергетического обмена это

1) кислородное расщепление

- 2) окислительное фотофосфорилирование
- 3) цикл Кребса
- 4) цикл Кальвина
- 3. Реакции подготовительного обмена у многоклеточных организмов происходят
- 1) в пищеварительном тракте
- 2) в цитоплазме клеток
- 3) в митохондриальном матриксе
- 4) на наружной мембране митохондрий
- 4. . На подготовительном этапе энергетического обмена происходит гидролиз:
- 1) углеводов до моносахаридов
- 2) углеводов до полисахаридов
- 3) белков до полипептидов
- 4) жиров до моносахаридов
- 5. Обеспечивают гидролиз на подготовительном этапе энергетического обмена:
- 1) ферменты пищеварительного тракта и лизосом
- 2) ферменты цитоплазмы
- 3) ферменты цикла Кребса
- 4) ферменты митохондрий
- 6. В результате гликолиза в клетках у животных при недостатке кислорода образуется
- 1) молочная кислота
- 2) этанол
- 3)ацетил-КоА
- ΠΒΚ
- 7. В результате гликолиза в клетках дрожжей при недостатке кислорода образуется
- 1) этанол

- ПВК
- 3) ацетил-КоА
- 4) молочная кислота
- 8. Энергия, которая выделяется в реакциях подготовительного обмена:
- 1) рассеивается в форме тепла
- 2) запасается в форме АТФ
- 3) большая часть рассеивается в форме тепла, меньшая запасается в форме АТФ
- 4) большая часть запасается в форме АТФ, меньшая рассеивается в форме тепла
- 9. Реакции цикла Кребса происходят
- 1) в матриксе митохондрий
- 2) внутри наружной мембраны митохондрий
- 3) в межмембранном пространстве митохондрий
- 4) в цитоплазме
- 10. В энергетическом обмене при восстановлении 24 протонов водорода $AT\Phi$ синтетазой образуется

1) 34 молекулы АТФ

- 2) 32 молекулы АТФ
- 3) 38 молекулы АТФ
- 4) 36 молекулы АТФ
- 11. При полном окислении одной молекулы глюкозы образуется
- 1) 38 молекулАТФ
- 2) 36 молекулАТФ
- 3) 34 молекул АТФ
- 4) 32 молекул АТФ
- 12. При гликолизе трех молекул глюкозы в животной клетке выделилось молекул углекислого газа
- 1) 0 молекул
- 2) 3 молекулы
- 3) 6 молекул
- 4) 9 молекул
- 13. При гликолизе10 молекул глюкозы образуется количество молекул АТФ, НАД+Н2, и углекислого газа
- 1) 20:20:0
- 2) 10:2:0
- 3) 10:2:2
- 4) 20:2:0
- 14. При спиртовом брожении 10 молекул глюкозы образуется количество молекул АТФ, НАД+Н2 и углекислого газа
- 1) 20:0:20
- 2) 10:0:10
- 3) 20:10:10
- 4) 10:10:10
- 15. Самый неэффективный путь получения энергии
- 1) гликолиз

- 2) аэробное окисление
- 3) фотосинтез
- 4) хемосинтез
- 16. Окисление глюкозы в клетках без участия кислорода происходит путем дегидрирования. Акцептором водорода при этом служит кофермент
- 1) НАД+
- 2) НАДФ+
- 3) ФАД+
- 4) ацетил-КоА
- 17. Протонный резервуар атомов водорода при аэробном окислениинаходится
- 1) в матриксе митохондрий
- 2) в матриксе и на внутренней стороне внутренней мембраны митохондрий
- 3) в межмембранном пространстве
- 4) на наружной стороне мембраны митохондрий
- 18. При полном окислении молекулы глюкозы образуется
- 1) 12 атомов Н
- 2) 6 атомов Н
- 3) 24 атомов Н
- 4) 8 атомов Н
- 19. Окислительное фосфорилирование многоступенчатый перенос
- 1) электронов от восстановленных форм НАДН и ФАДН
- 2) электронов от окисленных форм НАДН +и ФАДН+
- 3) протонов от восстановленных форм НАДН и ФАДН
- 4) протонов от окисленных форм НАДН и ФАДН
- 20. Окислительное фосфорилирование многоступенчатый перенос

1) электронов от восстановленных форм НАДН и ФАДН по цепи транспорта электронов, встроенной во внутреннюю мембрану митохондрий

- 2) электронов от восстановленных форм НАДН и ФАДН по цепи транспорта электронов, встроенной в наружную мембрану митохондрий
- 3) электронов от восстановленных форм НАДН и ФАДН по цепи транспорта электронов, встроенной в митохондриальный матрикс
- 4) электронов от восстановленных форм НАДН и ФАДН по цепи транспорта электронов, встроенной в межмембранное пространство митохондрий
- 21. Окислительное фосфорилирование многоступенчатый перенос

1) электронов от восстановленных форм НАДН и ФАДН по цепи транспорта электронов, встроенной во внутреннюю мембрану митохондрий

- 2) протонов от восстановленных форм НАДН и ФАДН по цепи транспорта протонов, встроенной в наружную мембрану митохондрий
- 3) электронов от окисленных форм НАДН и ФАДН по цепи транспорта электронов, встроенной в наружную мембрану митохондрий
- 4) протонов от окисленных форм НАДН и ФАДН по цепи транспорта протонов, встроенной в межмембранное пространство митохондрий
- 22. Окислительное фосфорилирование многоступенчатый перенос
- 1) электронов от восстановленных форм НАДН и ФАДН по цепи транспорта электронов, на конечный акцептор кислород

- 2) электронов от восстановленных форм НАДН и ФАДН по цепи транспорта электронов, на конечный акцептор Н2О
- 3) электронов от восстановленных форм НАДН и ФАДН по цепи транспорта электронов, на конечный акцептор СО2
- 4) электронов от восстановленных форм НАДН и ФАДН по цепи транспорта электронов, на конечный акцептор ацетил-КоА
- 23. Окислительное фосфорилирование многоступенчатый перенос

1) электронов от восстановленных форм НАДН и ФАДН по цепи транспорта электронов, на конечный акцептор кислород

- 2) протонов от восстановленных форм НАДН и ФАДН по цепи транспорта протонов, на конечный акцептор Н2О
- 3) электронов от окисленных форм НАДН и ФАДН по цепи транспорта электронов, на конечный акцептор О2
- 4) протонов от окисленных форм НАДН и ФАДН по цепи транспорта протонов, на конечный акцептор CO₂
- 24. Окислительное фосфорилирование многоступенчатый перенос

1) электронов от восстановленных форм НАДН и ФАДНна конечный акцептор кислород, сопряженный с синтезом АТФ

- 2) электронов от восстановленных форм НАДН и ФАДНна конечный акцептор кислород, сопряженный с синтезом ацетил-КоА
- 3) электронов от восстановленных форм НАДН и ФАДНна конечный акцептор СО2, сопряженный с синтезом ацетил-КоА
- 4) протонов от окисленных форм НАДН+ и ФАДН+ на конечный акцептор кислород, сопряженный с синтезом АТФ
- 25. В состав цепи транспорта электронов в митохондриях входит ряд компонентов:

1) убихинон (коэнзим Q), цитохромы b, c, a, выступающие переносчиками электронов

- 2) убихинон (коэнзим Q), цитохромы b, c, a, выступающие переносчиками протонов
- 3) убихинон (коэнзим Q), цитохромы b, c, a, ацетилКоA, выступающие переносчиками электронов
- 4) ацетил-КоА, цитохромы b, c, a, выступающие переносчиками электронов
- 26. В состав цепи транспорта электронов в митохондриях входит ряд компонентов:
- 1) убихинон (коэнзим Q), цитохромы b, c, a
- 2) убихинон (коэнзим Q), ацетил-КоА
- 3) цитохромы b, c, a, ацетил-КоА, убихинон
- 4) цитохромы b, c, a, ацетил-КоА
- 27. Расщепление липидов до глицерина и высших жирных кислот происходит в
- 1) подготовительном этапе энергетического обмена
- 2) гликолизе
- 3) аэробную стадию энергетического обмена
- 4) цикле Кребса
- 28. Расщепление липидов до глицерина и высших жирных кислот происходит в
- 1) подготовительном этапе энергетического обмена
- 2) анаэробную стадию энергетического обмена
- 3) аэробную стадию энергетического обмена
- 4) молочнокислом брожении

- 29. На подготовительном этапе энергетического обмена исходными веществами являются:
- 1) полисахариды
- 2) аминокислоты
- 3) моносахариды
- 4) жирные кислоты
- 30. На подготовительном этапе энергетического обмена исходными веществами являются:
- 1) полисахариды, белки, липиды
- 2) аминокислоты, липиды, полисахариды
- 3) моносахариды, липиды, белки
- 4) жирные кислоты, аминокислоты, глюкоза
- 31. Процессы биологического окисления характеризуются:
- 1) ступенчатостью процессов с участием ферментов
- 2) гидролизом полимеров
- 3) большой скоростью и быстрым выделением энергии в виде тепла
- 4) участием гормонов и малой скоростью
- 32. Небелковым переносчиком электронов в митохондриях является:
- 1) убихинон (коэнзим Q)
- 2) цитохром а
- 3) цитохром с
- 4) цитохром b
- 33. Глицерин образуется в результате распада
- 1) жиров
- 2) белков
- 3) полисахаридов
- 4) ATΦ
- 34. Гликолиз в клетках многоклеточных организмов
- 1) идет в цитоплазме
- 2) дает 6 молекул АТФ на одну молекулу глюкозы
- 3) полностью обеспечивает организм энергией
- 4) идет с участием кислорода
- 35. По теории П. Митчелла при окислительном фосфорилировании перенос электронов происходит:в митохондриях

1) на внутренней мембране и вызывает выкачивание H+ из матрикса митохондрий в межмембранное пространство

- 2) на наружней мембране и вызывает выкачивание H+ из матрикса митохондрий в межмембранное пространство
- 3) в матриксе митохондрий и вызывает выкачивание H+ из внутренней мембраны митохондрий в межмембранное пространство
- 4) в матриксе митохондрий и вызывает выкачивание H+ из межмембранного пространства митохондрий на внутреннюю мембрану
- 36. Промежуточным этапом между гликолизом и циклом трикарбоновых кислотявляется
- 1) декарбоксилирование и дегидрирование молекулы ПВК и взаимодействие с коферментом **A** (KoA) с образованием **ацетил-КоA**

- 2) карбоксилирование молекулыПВК и взаимодействие с сукцинат-КоА
- 3) карбоксилирование молекулыПВК и взаимодействие с ферментом А
- 4) декарбоксилированиемолекулыПВК и взаимодействие с ацетил-КоА с образованием кофермента A(KoA)
- 37. В качестве основного источника энергии организмы в первую очередь используют

1) углеводы

- 2) жиры
- 3) белки и жиры
- 4) белки и углеводы
- 38. Белки расщепляются в энергетическом обмене

1) после расходывания запасов углеводов и жиров

- 2) постоянно наряду с углеводами
- 3) после расходывания запасов углеводов
- 4) постоянно наряду с жирами
- 39. Реакции ферментативного окисления глюкозы в клетке включаю тпроцессы:

1) гликолиза

- 2) цикла Кребса
- 3) гликолиза и окислительногофосфорилирования
- 4) гликолиза, цикла Кребса и окислительногофосфорилирования
- 40. Гликолизом называется последовательность реакций, в результате которых:

1) глюкоза расщепляется на две молекулы пировиноградной кислоты (ПВК)

- 2) глюкоза расщепляется на углекислый газ и воду
- 3) глюкоза расщепляется на две молекулы молочной кислоты
- 4) крахмал расщепляется до глюкозы
- 41. При анаэробном дыхании (брожении) молекула пировиноградной кислоты (ПВК) расщепляется до

1) молочной кислоты или этилового спирта с углекислым газом

- 2) глюкозы, молочной кислоты и углекислого газа
- 3) глюкозы, этилового спирта или молочной кислоты
- 4) углекислого газа и воды
- 42. При аэробном дыхании молекула ПВК в конечном итоге окисляется до

1) углекислого газа и воды

- 2) молочной кислоты
- 3) этилового спирта и углекислого газа
- 4) молочной кислоты и углекислого газа
- 43. Действие пируватдегидразного комплекса:
- 1) комбинированное дегидрирование и декарбоксилирование пирувата
- 2) дегидрирование пирувата
- 3) декарбоксилирование пирувата
- 4) окислительное фосфорилирование пирувата
- 44. Ферменты, входящие в пируватгидразный комплекс:

1) пируватдегидрогеназа, дигидролипоилтрансацетилаза, дигидролипоилдегидрогеназа

2) пируватдегидрогеназа, дигидролипоилтрансацетилаза, алькогольдегидрогиназа

- 3) пируватдегидрогеназа, дигидролипоилдегидрогеназа, алькогольдегидрогиназа
- 4) дигидролипоилдегидрогеназа, дигидролипоилтрансацетилаза, алькогольдегидрогиназа
- 45. Ферменты, входящие в пируватгидразный комплекс:

1) пируватдегидрогеназа, дигидролипоилтрансацетилаза, дигидролипоилдегидрогеназа

- 2) пируватдегидрогеназа, дигидролипоилтрансацетилаза, АТФ-синтаза
- 3) пируватдегидрогеназа, дигидролипоилдегидрогеназа, АТФ-синтаза
- 4) дигидролипоилдегидрогеназа, дигидролипоилтрансацетилаза, АТФ- синтаза
- 46. Локализации пируватдегидразного комплекса у эукариот
- 1) в матриксе митохондрий
- 2) на внутренней мембране митохондрий
- 3) в межмембранном пространстве
- 4) в цитоплазме
- 47. Локализации пируватдегидразного комплекса у бактерий
- 1) в цитоплазме
- 2) на плазматической мембране
- 3) в межмембранном пространстве
- 4) в мезосомах
- 48. Местонахождение пируватгидразного комплекса у эукариот
- 1) в матриксе митохондрий
- 2) в цитоплазме
- 3) на гранулярной ЭПС
- 4) на внутренней мембране митохондрий
- 49. Место превращения пирувата в ацетил КоА
- 1) матрикс митохондрий
- 2) цитоплазма
- 3) внутренняя мембрана митоходрий
- 4) межмембранное пространство
- 50. Место образования пирувата
- 1) цитоплазма
- 2) матрикс митохондрий
- 3) внутренняя мембрана митоходрий
- 4) межмембранное пространство
- 51. Ко факторы, необходимые для функционирования пируватгидразного комплекса:
- 1) КоА, ТПФ, ФАД, НАД+,липоат
- 2) КоA, ТП Φ , ΦA Д, H AД+
- 3) тпф, ФАД, НАД+,липоат
- 4) КоА, ФАД, НАД+,липоат
- 52. Ко факторы, необходимые для функционирования пируватгидразного комплекса:
- 1) КоА, ТПФ, ФАД, НАД+,липоат
- 2) ТПФ, ФАД, НАД+,липоат
- 3) КоА, ТМФ, НАД+, липоат
- 4) КоА, ТМФ, ФАД, НАД+

- 53. Продукты окислительного декарбоксилирования пирувата:
- 1) Ацетил КоА, СО2
- 2) Ацетил КоА, АТФ
- 3) Ko-AS, ATΦ
- 4) CO₂, Ko-AS
- 54. Ко факторы пируватгидразного комплекса являются производными: КоА; НАД+; ТПФ, ФАД, липоат соответственно:

1) витамин В5, витамина РР, витамина В1, витамин В2, липоевая кислота

- 2) витамина В1, витамин В2, витамин В5, витамина РР, липоевая кислота
- 3) витамин В2, витамин В5, витамина В1, витамин В2, липоевая кислота
- 4) витамина РР, витамина В1, витамин В2, витамин В5, липоевая кислота
- 55. Ко факторы пируватгидразного комплекса являются производными: КоА; НАД+; тпф, ФАД, липоат соответственно:

1) пантотеновой кислоты, ниацина, тиамина, рибофлавина, липоевая кислота

- 2) тиамина, рибофлавина, пантотеновой кислоты, ниацина, липоевая кислота
- 3) пантотеновой кислоты, ниацина, рибофлавина, тиамина, липоевая кислота
- 4) рибофлавина, пантотеновой кислоты, ниацина, тиамина, липоевая кислота
- 56. Цикл Кребса начинается с

1) присоединения ацетил-КоА к оксалоацетату (ЩУК)

- 2) присоединения Ко-АS к ПВК
- 3) присоединения ацетил-КоА к лимонной кислоте
- 4) присоединения Ко-AS к оксалоацетату (ЩУК)
- 57. На первом этапе цикла Кребса образуется
- 1) лимонная кислота (цитрат)
- 2) оксалоацетат (ЩУК)
- 3) янтарная кислота (сукцинат)
- 4) а-кетоглутарат
- 58. Первичным продуктом реакции субстратного фосфорилирования цикла Кребса является
- ΓΤΦ
- 2) ATΦ
- 3) TMΦ
- 4) ΤΠΦ
- 59. При субстратном фосфорилировании одного оборота цикла Кребса синтезируется
- 1) 1ΓΤΦ
- 2) 1ATΦ
- 3) 2ATΦ
- 4) 1TMΦ
- 60. ГТФ синтезируется ферментом

1) сукцинил-КоА-синтетазой

- 2) нуклеозиддифосфаткиназой
- 3) пируватдегидрогеназой
- 4) дигидролипоилтрансацетилазой

- 61. ГТФ синтезируется ферментом
- 1) сукцинил-КоА-синтетазой
- 2) нуклеозиддифосфаткиназой
- 3) АТФ-синтетазой
- 4) пируватдекарбоксилазой
- 62. Переход ГТФ в АТФ катализируется ферментом
- 1) нуклеозиддифосфаткиназой
- 2) сукцинил-КоА-синтетазой
- 3) АТФ-синтетазой
- 4) АТФ-синтазой
- 63. Количество кДж, выделяемых в реакции перехода ГТФ в АТФ, синтезированной соответственно ферментом:
- 1) 0 кДж/моль; нуклеозиддифосфаткиназой
- 2) 2 кДж/моль; нуклеозиддифосфаткиназой
- 3) 0 кДж/моль; сукцинил-КоА-синтетазой
- 4) 2 кДж/моль; АТФ-синтетазой
- 64. Количество кДж, выделяемых в реакции перехода ГТФ в АТФ, синтезированной соответственно ферментом:
- 1) 0 кДж/моль; нуклеозиддифосфаткиназой
- 2) 2 кДж/моль; нуклеозиддифосфаткиназой
- 3) 4 кДж/моль; АТФ-синтетазой
- 4) 8 кДж/моль; АТФ-синтетазой
- 65.Количество кДж, выделяемых в реакции перехода ГТФ в АТФ, синтезированной соответственно ферментом:
- 1) 0 кДж/моль; нуклеозиддифосфаткиназой
- 2) 2 кДж/моль; нуклеозиддифосфаткиназой
- 3) 4 кДж/моль;нуклеозиддифосфаткиназой
- 4) 8 кДж/моль; нуклеозиддифосфаткиназой
- 66. Количество кДж, выделяемых в реакции перехода ГТФ в АТФ, синтезированной соответственно ферментом:
- 1) 0 кДж/моль; нуклеозиддифосфаткиназой
- 2) 2 кДж/моль; АТФ-синтазой
- 3) 4 кДж/моль; АТФ-синтазой
- 4) 8 кДж/моль; нуклеозиддифосфаткиназой
- 67. Два атома углерода покидают цикл в виде двух молекул СО2, образовавшихся при окислении:
- 1) изоцитрата и α-кетоглутарата
- 2) пирувата и сукцината
- 3) пирувата и изоцитрата
- 4) сукцинатаи α-кетоглутарата
- 68. Два атома углерода покидают цикл в виде двух молекул СО2, образовавшихся при окислении:
- 1) изоцитрата и α-кетоглутарата
- 2) оксалоацетат и α-кетоглутарата
- 3) пируватаи α-кетоглутарата

- 4) сукцинатаи α-кетоглутарата
- 69. При одном обороте цикла Кребса образуется:
- 1) АТФ, 3 НАДН и 1 ФАДН2
- 2) 2АТФ, 3 НАДН и 1 ФАДН2
- 3) АТФ, 3 НАДН и 2 ФАДН2
- 4) 2АТФ, 6 НАДН и 3 ФАДН2
- 70. При двух оборотах цикла Кребса образуется:
- 1) 2АТФ, 6 НАДН и 3 ФАДН2
- 2) 2АТФ, 3 НАДН и 1 ФАДН2
- 3) 2АТФ, 2 НАДН и 2 ФАДН2
- 4) 2АТФ, 6 НАДН и 2 ФАДН2
- 71. Переход электронов по электроно транспортной цепи от доноров электронов к акцепторам протекает (например) и является процессом:
- 1) от НАДН к кислороду; экзергоническим
- 2) от кислорода к НАДН; экзергоническим
- 3) от НАДН к кислороду; эндергоническим
- 4) от кислорода к НАДН; эндергоническим
- 72. Переход электронов по электроно транспортной цепи от доноров электронов к акцепторам с выделением энергии является процессом:
- 1) экзергоническим
- 2) эндергоническим
- 3) эндотермическим
- 4) экзотермическим
- 73. Окислительное фосфорилирование идущее с затратой энергии является процессом:
- 1) эндергоническим
- 2) экзергоническим
- 3) эндотермическим
- 4) экзотермическим
- 74. Процесс, в ходе которого в митохондриях переносится энергия от ЭТЦ к АТФ-синтазе и посредством чего соответственно:
- 1) хемиосмоса, посредством переноса протонов через мембрану
- 2) циклического фосфорилирования, посредством переноса электронов через мембрану
- 3) нециклического фосфорилирования, посредством переноса протонов через мембрану
- 4) хемиосмоса, посредством переноса электронов через мембрану
- 75. Место локализации ЭТЦ и АТФ-синтетазы в митохондриях:
- 1) на внутренней мембране митохондрий
- 2) на наружной мембране митохондрий
- 3) в митохондриальном матриксе
- 4) в межмембранном пространстве
- 76. Протоны переносятся под действием ферментов ЭТЦ митохондрий с
- 1) отрицательно заряженной стороны мембраны (N-сторона) на положительно заряженную сторону

- 2) положительно заряженной стороны мембраны (N-сторона) на отрицательно заряженную сторону
- 3) отрицательно заряженной стороны мембраны (N-сторона) в матрикс
- 4) положительно заряженной стороны мембраны (N-сторона) в матрикс
- 77. Комплекс І ЭТЦепи:

1) НАДН-дегидрогеназа

- 2) ФАД-зависимые дегидрогеназы
- 3) комплекс цитохромов в-с
- 4) цитохром с-кислород-оксидоредуктаза
- 78. Комплекс ІІ ЭТЦепи:

1) ФАД-зависимые дегидрогеназы

- 2) НАДН-дегидрогеназа
- 3) комплекс цитохромов в-с
- 4) цитохром с-кислород-оксидоредуктаза
- 79. Комплекс III ЭТЦепи
- 1) комплекс цитохромов в-с
- 2) НАДН-дегидрогеназа
- 3) ФАД-зависимые дегидрогеназы
- 4) цитохром с-кислород-оксидоредуктаза
- 80. Комплекс IV ЭТЦепи

1) цитохром с-кислород-оксидоредуктаза

- 2) НАДН-дегидрогеназа
- 3) ФАД-зависимые дегидрогеназы
- 4) комплекс цитохромов в-с
- 81. Перенос электрона с НАДН на убихинон происходит за счет комплекса І ЭТЦепи

1) НАДН-дегидрогеназа

- 2) ФАД-зависимые дегидрогеназы
- 3) комплекс цитохромов в-с
- 4) цитохром с-кислород-оксидоредуктаза
- 82. Восстановление $\Phi A Д$ в окислительно-восстановительных реакциях происходит за счет комплекса II ЭТЦепи

1) ФАД-зависимые дегидрогеназы

- 2) НАДН-дегидрогеназа
- 3) комплекс цитохромов в-с
- 4) цитохром с-кислород-оксидоредуктаза
- 83. Принимает электрон от убихинона и передает на цитохром с за счет комплекса III ЭТЦепи
- 1) комплекс цитохромов в-с
- 2) НАДН-дегидрогеназа
- 3) ФАД-зависимые дегидрогеназы
- 4) цитохром с-кислород-оксидоредуктаза
- 84. Принимают электрон от цитохрома и передают их на кислород за счет комплекса IV ЭТЦепи

1) цитохром с-кислород-оксидоредуктаза

- 2) НАДН-дегидрогеназа
- 3) ФАД-зависимые дегидрогеназы
- 4) комплекс цитохромов в-с
- 85. Электроны передаются по ЭТЦ митохондрий до тех пор, пока не соединяться с
- 1) молекулярным кислородом
- 2) НАДН
- 3) ФАДН2
- 4) атомарным кислородом
- 86. В митохондриях переносчики цитохромы, относящиеся к белкам с гемовойпростетической группой состоят из
- 1) порфинового кольца с центральным атомом окисленного феррижелеза **Fe3+ или восстановленную ферро Fe2+**
- 2) порфинового кольца с центральным атомом окисленного феррижелеза Fe2+ или восстановленную ферро Fe3+
- 3) порфинового кольца с центральным атомом окисленного феррижелеза Fe2+
- 4) порфинового кольца с центральным атомом восстановленную ферро Fe3+
- 87. В митохондриях переносчик кофермент Q переносит:
- 1) электроны и протоны
- 2) только электроны
- 3) только протоны
- 4) анионы
- 88.Железо серные белки в своем составе имеют:
- 1) 2 или 4 атома железа, ковалентно связанные с равным числом атомов серы
- 2) 3 атома железа, ковалентно связанные с 3 атомами серы
- 3) 2 или 6 атомов железа, ковалентно связанные с равным числом атомов серы
- 4) 6 атомов железа, ковалентно связанные с 6 атомами серы
- 89. Биядерные медные центры переносчики электронов участвуют:
- 1) в связывании электронов с О2 и его восстановлении до Н2О
- 2) в связывании электронов с атомарным кислородоми его восстановлении до Н2О
- 3) в связывании электронов с анионом кислородаи его восстановлении до H2O
- 4) в связывании электронов с О2 и его окислении до Н2О
- 90. В дыхательной цепи митохондрий синтез АТФ происходит в комплексе:
- 1) 5
- 2) 4 и 5
- 3) 3, 4, 5
- 4) 4
- 91. Синтез АТФ в дыхательной цепи митохондрий происходит при участии фермента
- 1) АТФ синтаза
- 2) АТФ синтетаза
- 3) нуклеозиддифосфаткиназа
- 4) нуклеозиддифосфаткиназа иАТФ-синтаза

- 92. Функция, осуществляемая субъединицами F0Fферментативного комплекса АТФ-синтазы:
- 1) F0-обеспечивает образование H+-переносящего канала АТФ- синтазы
- 2) F1- обеспечивает образование H+-переносящего канала АТФ- синтазы
- 3) F0 обладает АТФазной активностью
- 4) F1- не участвует в образовании H+-переносящего канала ATФ- синтазы
- 93. В митохондриях эукариот в комплексе І происходит:
- 1) окисление НАДН и восстановление убихинона Q
- 2) окисление сукцината до фумарата и восстановление убихинона Q
- 3) окисление восстановленного убихинона и восстановление цитохрома с
- 4) перенос электронов с цитохрома с на кислород с образованием воды
- 94. В митохондриях эукариот в комплексе ІІ происходит:
- 1) окисление сукцината до фумарата и восстановление убихинона Q
- 2) окисление НАДН и восстановление убихинона Q
- 3) окисление восстановленного убихинона и восстановление цитохрома с
- 4) перенос электронов с цитохрома с на кислород с образованием воды
- 95. В митохондриях эукариот в комплексе III происходит:
- 1) окисление восстановленного убихинона и восстановление цитохрома с
- 2) окисление НАДН и восстановление убихинона Q
- 3) окисление сукцината до фумарата и восстановление убихинона Q
- 4) перенос электронов с цитохрома с на кислород с образованием воды
- 96. В митохондриях эукариот в комплексе IV происходит:
- 1) перенос электронов с цитохрома с на кислород с образованием воды
- 2) окисление НАДН и восстановление убихинона Q
- 3) окисление сукцината до фумарата и восстановление убихинона О
- 4) окисление восстановленного убихинона и восстановление цитохрома с
- 97. При спиртовом брожении уксусный альдегид играет роль
- 1) конечного акцептора водорода (НАД·Н2)
- 2) конечного донора водорода
- 3) конечного акцептора кислорода
- 4) конечного донора кислорода
- 98. При спиртовом брожении уксусный альдегид восстанавливается в
- 1) этиловый спирт
- 2) CO2
- 3) ΠBK
- 4) глюкозу
- 99. При спиртовом брожении уксусный альдегид восстанавливается в этиловый спирт под воздействием фермента
- 1) алкогольдегидрогеназы
- 2) пируватдегидрогеназы
- 3) дигидролипоилдегидрогеназы
- 4) АТФ-синтазы
- 100. При молочно кислом брожении ПВК восстанавливается в молочную кислоту, а НАД·Н2 окисляется в НАД+ при участии фермента

- 1) лактикодегидрогеназы
- 2) пируватдегидрогеназы
- 3) дигидролипоилдегидрогеназы
- 4) алкогольдегидрогеназы АТФ-синтазы

Блок Е "Фотосинтез"

- 1. Структурная и функциональная единица хлоропласта:
- 1) тилакоид
- 2) строма
- 3) ламелла
- 4) квантосома
- 2. Фотосинтетическая единица хлоропласта:
- 1) квантосома
- 2) тилакоид
- 3) ламелла
- 4) строма
- 3. Тилакоид это
- 1) структурная и функциональная единица хлоропласта
- 2) фотосинтетическая единица хлоропласта
- 3) стопка гран
- 4) место прохождения синтеза углеводов
- 4. В тилакоиде происходят процессы:
- 1) световая фаза фотосинтеза
- 2) синтез углеводов
- 3) цикл Кальвина
- 4) цикл Кребса
- 5. В тилакоиде происходят процессы:
- 1) фотолиз воды
- 2) синтез глюкозы
- 3) цикл Кальвина
- 4) цикл Кребса
- 6. В тилакоиде происходят процессы:
- 1) циклическое фотофосфорилирование
- 2) синтез глюкозы
- 3) цикл Кальвина
- 4) цикл Кребса
- 7. В тилакоиде происходят процессы:
- 1) нециклическое фотофосфорилирование
- 2) синтез глюкозы
- 3) цикл Кальвина
- 4) цикл Кребса
- 8. В строме хлоропласта происходят процессы:
- 1) синтез глюкозы
- 2) нециклическое фотофосфорилирование

- 3) циклическое фотофосфорилирование
- 4) цикл Кребса
- 9. Цикл Кальвина происходит в
- 1) строме хлоропласта
- 2) гране хлоропласта
- 3) тилакоиде хлоропласта
- 4) квантосоме хлоропласта
- 10. Циклическое фотофосфорилирование НЕ происходит в
- 1) строме
- 2) гране
- 3) тилакоиде
- 4) квантосоме
- 11. Нециклическое фотофосфорилирование НЕ происходит в
- 1) строме
- 2) гране
- 3) тилакоиде
- 4) квантосоме
- 12. Фотолиз воды НЕ происходит в
- 1) строме
- 2) гране
- 3) тилакоиде
- 4) квантосоме
- 13. В квантосоме НЕ происходят процессы:
- 1) синтез глюкозы
- 2) нециклическое фотофосфорилирование
- 3) циклическое фотофосфорилирование
- 4) фотолиз воды
- 14. В квантосоме происходят процессы:
- 1) фотолиз воды
- 2) цикл Кальвина
- 3) цикл Кребса
- 4) окислительное фосфорилирование
- 15. В отличие от митохондрий в тилакоидах происходит процесс:
- 1) фотолиз воды
- 2) цикл Кальвина
- 3) цикл Кребса
- 4) окислительное фосфорилирование
- 16. В отличие от митохондрий в квантосомах происходит процесс:
- 1) фотолиз воды
- 2) цикл Кальвина
- 3) цикл Кребса
- 4) окислительное фосфорилирование
- 17. В отличие от митохондрий в гранах тилакоидов происходят процессы:

- 1) фотолиз воды
- 2) цикл Кальвина
- 3) цикл Кребса
- 4) окислительное фосфорилирование
- 18. Тилакоидное пространство это

1) внутренние полости тилакоидов сообщающиеся между собой, с образованием третьего внутреннего компартмена хлоропласта

- 2) внутренние полости тилакоидов сообщающиеся между собой, с образованием второго внутреннего компартмена хлоропласта
- 3) наружные полости тилакоидов сообщающиеся между собой, с образованием второго внутреннего компартмена хлоропласта
- 4) наружные полости тилакоидов сообщающиеся между собой, с образованием второго компартмена хлоропласта
- 19. На третьей мембране хлоропласта находятся:

1) фотосистема (ФС 1) и АТФ-синтетаза, электронно-транспортная цепь

- 2) только фотосистема (ФС1)
- 3) электронно-транспортная цепь и АТФ-синтетаза
- 4) только фотосистемы (ФС1 и ФС2)
- 20. В центре квантосомы находится:

1) ЛП - липопротеидный комплекс

- 2) молекула хлорофилла
- 3) молекула каротина
- 4) молекула фосфолипида
- 21. На внутренней мембране квантосомы находятся:

1) молекулы хлорофилла, каротина, фосфолипида

- 2) ЛП липопротеидный комплекс
- 3) молекулы каротина, хлорофилла, ЛП
- 4) молекулы фосфолипида, ЛП
- 22. Реакционные центры хлоропластов образуют:
- 1) только хлорофиллы а с тах поглощения Р680, Р700нм
- 2)толькохлорофиллыа с тах и Р700нм, Р670нм
- 3) только хлорофиллы в стах и Р700нм, Р670нм
- 4) только хлорофиллы в стах и Р700нм, Р670нм
- 23. Антенные центры хлоропластов образуют все КРОМЕ:
- 1) молекул хлорофилла а с тах поглощения Р680, Р700нм
- 2) молекул хлорофиллаа с тах и Р700нм, Р670нм
- 3) молекул хлорофилла в стах и Р700нм, Р670нм
- 4) молекул хлорофилла в стах и Р700нм, Р670нм
- 24. Циклическое фотофосфорилирование сопряжённо с
- 1) циклическим потоком электронов в электрон-транспортной цепи
- 2) прямым потоком электронов от H2O к НАДФ+
- 3) восстанавлением НАДФ+ в НАДФН
- 4) с непрямым потоком электронов от $H2O\ \kappa\ HA \Box \Phi_{+}$
- 25. Первым переносчиком электронов фотосистемы Пявляется:

- 1) феофитин
- 2)пластохинон
- 3) пластоцианин
- 4) цитохромыв f
- 26. В нециклическом фотофосфорилировании феофитин отдает электроны на восстановление
- 1) пластохинона
- 2) пластоцианина
- 3) цитохромовbf
- 4) ферредоксина
- 27. При фотосинтезе комплекс цитохромовь осуществляет перенос электронов от
- 1) восстановленного пластохинона к пластоцианину
- 2) окисленного пластохинона к пластоцианину
- 3) восстановленногопластоцианина к пластохинону
- 4) окисленного пластоцианина к пластохинону
- 28. При фотосинтезе комплекс цитохромов осуществляет перенос электронов от

1) восстановленного пластохинона к пластоцианину

- 2) окисленного пластохинона к восстановленному ферредоксину
- 3) восстановленногопластоцианина к окисленному ферредоксину
- 4) окисленного пластоцианина к пластохинону
- 29. Действие ферредоксина при нециклическом фотофосфорилировании:
- 1) восстанавливает НАДФ+ в НАДФН
- 2) окисляет НАДФНв НАДФ+
- 3) передает электроны пластохинону
- 4) передает электроны пластоцианину
- 30. При нециклическом фотофосфорилировании ФС І приобретает электроны у
- 1) восстановленного пластоцианина
- 2) окисленного пластоцианина
- 3) восстановленного пластохинона
- 4) окисленного пластохинона
- 31. ФС II при нециклическом фотофосфорилировании получает электроны от
- 1) фотолиза воды
- 2) ΦC I
- 3) восстановленного пластоцианина
- 4) ферредоксина
- 32. В фотолизе воды участвует:
- 1) Мп+ содержащий белковый комплекс
- 2) Cu+ содержащий белковый комплекс
- 3) Fe+ содержащий белковый комплекс
- 4) Mg+ содержащий белковый комплекс
- 33.При нециклическом фотофосфорилировании Mn+ содержащий белковый комплекс отбирает электроны у воды и передает их
- 1) на Р680+
- 2) на Р690+

- 3) на Р700+
- 4) на P670+
- 34. При фотосинтезе О2:

1) образуется из Н2О и является побочным продуктом фотосинтеза

- 2) образуется из СО2 и является побочным продуктом фотосинтеза
- 3) образуется из H2O и является основным продуктом фотосинтеза
- 4) образуется из СО2 и является основным продуктом фотосинтеза
- 35. Космическая роль растений при фотосинтезе выражается в:

1) выделении кислорода в атмосферу

- 2) фотолизе воды
- 3) синтезе глюкозы
- 4) захвате СО2 из атмосферы акцептором РБФ
- 36. Первой реакцией цикла Кальвина является:

1) карбоксилирование1,5-РДФ с участием фермента РДФ-карбоксилазы

- 2) декарбоксилирование 1,5-РДФ с участием фермента РДФ-карбоксилазы
- 3) карбоксилирование 1,5-РДФ с участием фермента РМФ-карбоксилазы
- 4) декарбоксилирование 1,5-РДФ) с участием фермента РМФ-карбоксилазы
- 37. В цикле Кальвина переход 1,3-ДФГК до 3-ФГАпроисходит с помощью:
- 1) НАДФ-Н
- 2) НАДФ+
- 3) ФАДН
- 4) ФАДН, НАДФ-Н
- 38. В цикле Кальвина переход 1,3-ДФГК до 3-ФГАпроисходит за счет:

1) восстановления 1,3-ДФГК

- 2) окисления 1,3-ДФГК
- 3) карбоксилирования 1,3-ДФГК
- 4) декарбоксилирования 1,3-ДФГК
- 39. Единственная восстановительная реакция в цикле Кальвина это:

1) переход 1,3-ДФГК до 3-ФГА

- переход 3-ФГА в 1,3-ДФГК
- 3) переход 3-ФГА в РДФ
- 4) переход 1,3-ДФГКв РДФ
- 40. Фруктоза-1,6-дифосфат образуется: при участии:

1) ФГА, ФДА и фермента альдолазы

- 2) 2 ФГА и ферментаальдолазы
- 3) 2 ФДА и ферментатриозофосфатизомеразы
- 4) ФГА, ФДА и фермента триозофосфатизомеразы
- 41. Часть молекул 3-ФГА превращается в ФДА: под действием фермента:
- 1) триозофосфатизомеразы
- 2) альдолазы
- 3) АТФсинтазы
- 4) РДФ-карбоксилазы
- 42. В цикле Кальвина акцептором СО2 является:

- 1) 1,5-РДФ
- 2) 1,3-ДФГК
- 3) 3-ФГА
- 4) ФДА
- 43.В одном цикле Кальвина используется молекул АТФ:
- 1) 3 ATΦ
- 2) 1ATΦ
- 3) 2 ATΦ
- 4) 6 ATΦ
- 44. На синтез одной молекулы глюкозы в цикле Кальвина используется молекул АТФ:
- 1) 18
- 2) 6
- 3) 12
- 4) 24
- 45. У фотосинтезирующих бактерий донором электронов являются:
- 1) H2S
- 2) H2SO4
- 3) CH₃COOH
- 4) H2O
- 46. Первичным акцептором электронов при фотосинтезе у пурпурных бактерий является:
- 1) бактериофеофитин
- 2) бактериохлорофилл
- 3) цитохром-bc1-комплекс
- 4) хинон
- 47. Выберете правильную последовательность перехода электронов при фотосинтезе у пурпурных бактерий
- 1) П680-бактериофитин-хинон-цитохром-*bc*1-комплекс-цитохром с2-П680
- 2) П700-бактериофитин-хинон-цитохром-*bc*1-комплекс-цитохром с2-П700
- 3) $\Pi680$ -хинон -бактериофитин- цитохром-bc1-комплекс-цитохром c2- $\Pi680$
- 4) $\Pi 700$ -хинон -бактериофитин- цитохром-bc1-комплекс-цитохром с2- $\Pi 700$
- 48. Зелёные серобактерии используют фотосистему:
- 1) $\Pi 840$
- 1 Π680
- 3) Π₇₀₀
- 4) Π690
- 49. Циклическое фотофосфорилирование зелёных серобактерий очень схоже с таковым у высших растений и включает перенос электрона с
- 1) ферредоксина на мембранный переносчик менахинон
- 2) ферредоксина на цитохром- bc_1 -комплекс
- 3) цитохром-bc1-комплекса на менахинон
- 4) цитохром- bc_1 -комплекса на ферредоксин
- 50. Организмы, использующие для питания только неорганический источник углерода- это
- 1) автотрофы
- 2) гетеротрофы

- 3) автотрофы и гетеротрофы
- 4) миксотрофы
- 51. Организмы, не способные синтезировать органические вещества из неорганических соединений это
- 1) гетеротрофы
- 2) автотрофы
- 3) автотрофы и гетеротрофы
- 4) фотосинтетики
- 52. К фотосинтетикам НЕ относятся:
- 1) грибы
- 2) растения
- 3) цианобактерии
- 4) водоросли
- 53. При фотосинтезе используется энергия:
- 1) квантов света и АТФ
- 2) только АТФ
- 3)квантов света и углеводов
- 4)квантов света, АТФ и углеводов
- 54. Для реакций световой фазы фотосинтеза необходимы:

1) хлорофилл, вода, НАДФ+, АДФ и неорганический фосфат

- 2) вода, углекислый газ, АДФ и неорганический фосфат
- 3) вода, хлорофилл, НАДФ+, АТФ
- 4) хлорофилл, вода, углекислый газ, АДФ и неорганический фосфат
- 55. В световую фазу фотосинтеза энергия квантов света расходуется на синтез:
- 1) АТФ и переносчика протонов (НАДФ-Н2)
- 2) переносчика протонов (НАДФ-Н2) и углеводов
- 3) только АТФ
- 4) АТФ и углеводов
- 56. В темновую фазу фотосинтеза происходят реакции:

1) синтеза углеводов

- 2) фотолиза воды
- 3) синтеза АТФ
- 4) синтеза переносчика протонов
- 57. Для темновой фазы фотосинтеза источником энергии служит:
- 1) АТФ и переносчик протонов (НАДФ-Н2)
- 2) углекислый газ и АТФ
- 3) углекислый газ
- 4) углекислый газ и переносчик протонов (НАДФ-Н2)
- 58. В результате фотосинтеза на Земле:
- 1) образуются органические вещества и кислород
- 2) образуются органические вещества и вода
- 3) поглощается вода и образуется углекислый газ
- 4) поглощается углекислый газ и органические вещества

- 59. Хемосинтезирующие бактерии используют для жизнедеятельности энергию:
- 1) реакций окисления химических веществ
- 2) солнечного света
- 3) реакций восстановления
- 4) реакций окисления и восстановления
- 60. Хлорофилл максимально поглощает лучи спектра:
- 1) красные
- 2) желтые
- 3 синие
- 4) оранжевые
- 61. Метод Крауса- это метод...
- 1) разделения пигментов
- 2) обнаружения ассимиляционного крахмала
- 3) поглощения хлорофилла
- 4) синтеза пигментов
- 62. Продукты циклического фотосинтетического фосфорилирования:
- ATΦ
- 2) НАДФ.Н2,АТФ
- 3) НАДФ.Н2
- 4) O2
- 63. Циклическое фотосинтетическое фосфорилирование характерно только для:
- 1) фотосинтезирующих бактерий
- 2) высших растений
- 3) грибов
- 4) водорослей
- 64. По методу Крауса при добавленииб ензина к спиртовой вытяжке обнаруживаются:
- 1) ксантофиллы
- 2) хлорофилл а
- 3) хлорофилл в
- 4)каротин
- 65. В пробе Сакса реактивом на ассимиляционный крахмал является:

1) р-рйода

- 2) соляная кислота
- 3) флороглюцин
- 4) судан Ш
- 66. По методу Крауса, при добавлении едкого натрия к бензиновой вытяжке обнаруживаются:
- 1) каротиноиды
- 2) ксантофиллы
- 3) хлорофилл а
- 4) хлорофилл в
- 67. Пигменты из хлоропластов можно выделить
- 1) спиртом
- 2) бензином

- 3) водой
- 4) щелочью
- 68. Донором электронов в нециклическом фотосинтетическом фосфорилировании для ФС I являются
- 1) ФС**II**
- 2) O2
- 3) вода
- 4) НАДФ.Н2
- 69. Донором электронов в нециклическом фотосинтетическом фосфорилировании для ФСІІ являются
- 1) вода
- 2) O2
- 3) ФСI
- 4) НАДФ.Н2
- 70. Донором электронов в нециклическом фотосинтетическом фосфорилировании для ФСІІ являются
- 1) вода
- 2) ATΦ
- 3) глюкоза
- 4) O2

Блок 3 Транскрипция

- 1. Первичную структуру всех белков, образующихся в организме, кодирует
- 1) ДНК
- 2) тРНК
- 3) p PHK
- 4) мя PHK
- 2. В процессе транскрипции у прокариот происходит образование
- 1) м РНК
- 2) пре-мРНК
- 3) p PHK
- 4) T PHK
- 3. В процессе транскрипции у эукариот происходит образование
- 1) пре-мРНК
- 2) mPKH
- 3) pPHK
- 4) тРНК
- 4. Единицей информации в кодирующей цепи ДНК является последовательность из
- 1) трех нуклеотидов
- 2) двух нуклеотидов
- 3) четырех нуклеотидов
- 4) шести нуклеотидов
- 5. Количество возможных вариантов триплетов в ДНК при биосинтезе белка
- 1) 64

- 2) 61
- 3) 20
- 4) 3
- 6. Смысловым триплетом является последовательность из трех нуклеотидов, которая кодирует
- 1) аминокислоту
- 2) сигнал окончания транскрипции
- 3) место вырезания интрона
- 4) место сшивки экзонов
- 7. На одну аминокислоту может приходиться смысловых триплетов
- 1) от одного до шести
- 2) строго один
- 3) больше шести
- 4) строго два
- 8. В молекуле ДНК триплетов, кодирующих окончание синтеза молекулы РНК
- 1) три
- 2) один
- 3) два
- 4) четыре
- 9. Вырожденность генетического кода определяется тем, что
- 1) одну аминокислоту кодирует от одного до шести триплетов
- 2) каждому триплету соответствует только одна аминокислота
- 3) во всех организмах смысл триплета один и тот же
- 4) между триплетами одного гена нет промежутков (не считая интроны)
- 10. Универсальность генетического кода определяется тем, что
- 1) во всех организмах смысл триплета один и тот же
- 2) одну аминокислоту кодирует от одного до шести триплетов
- 3) каждому триплету соответствует только одна аминокислота
- 4) между триплетами одного гена нет промежутков (не считая интроны)
- 11. Специфичность генетического кода определяется тем, что
- 1) каждому триплету соответствует только одна аминокислота
- 2) между триплетами одного гена нет промежутков (не считая интроны)
- 3) во всех организмах смысл триплета один и тот же
- 4) одну аминокислоту кодирует от одного до шести триплетов
- 12. Непрерывность генетического кода определяется тем, что
- 1) между триплетами одного гена нет промежутков (не считая интроны)
- 2) во всех организмах смысл триплета один и тот же
- 3) одну аминокислоту кодирует от одного до шести триплетов
- 4) каждому триплету соответствует только одна аминокислота
- 13. Линейное соответствие между последовательностями триплетов кодирующей цепи ДНК и аминокислот в кодируемой полипептидной цепи это свойство генетического кода
- 1) коллинеарность
- 2) непрерывность
- 3) специфичность
- 4) универсальность

- 14. Кодоны, кодирующие одну аминокислоту, отличаются
- 1) последним (третьим) нуклеотидом
- 2) первым нуклеотидом
- 3) вторым нуклеотидом
- 4) всеми тремя нуклеотидами одновременно
- 15. У сходных по строению аминокислот кодоны
- 1) совпадают по двум или по одному (центральному) нуклеотиду
- 2) совпадают исключительно по третьему нуклеотиду
- 3) совпадают исключительно по первому нуклеотиду
- 4) сходства между собой не имеют
- 16. Некодирующие участки ДНК между генами называются
- 1) спейсерами
- 2) интронами
- 3) экзонами
- 4) оперонами
- 17. К спейсерным последовательностями ДНК у про- и у эукариот относятся
- 1) промоторы
- 2) операторы
- 3) энхансеры
- 4) аттенюаторы
- 18. С промотором молекулы ДНК связывается
- 1) РНК-полимераза
- 2) ДНК-полимераза
- 3) лигаза
- 4) эндонуклеаза
- 19. Последовательности ДНК, сигнализирующие об окончании синтеза молекулы РНК у эукариот

1) транскрибируются РНК - полимеразой

- 2) не считываются РНК-полимеразой
- 3) могут располагаться перед геном
- 4) транскрибируются тРНК
- 20. Участками связывания регуляторных белков у прокариот являются
- 1) операторы
- 2) промоторы
- 3) аттенюаторы
- 4) терминаторы
- 21. Общие факторы транскрипции у эукариот необходимы для

1) связывания РНК-полимеразы с промотором

- 2) синтеза цепи РНК с участием РНК-полимеразы
- 3) окончания синтеза молекулы РНК
- 4) созревания молекулы РНК
- 22. Энхансеры относительно регулируемого гена находятся

1) как близко, так и достаточно далеко (на расстоянии нескольких тысяч нуклеотидных пар)

- 2) исключительно в промоторной области
- 3) в середине кодирующей последовательности
- 4) исключительно в зоне интронов
- 23. В состав оперона у прокариот входят
- 1) промотор, оператор, гены
- 2) ген регулятор, промотор, оператор
- 3) ген регулятор, оператор, гены
- 4) ген регулятор, аттенюаторы, оператор
- 24. Конститутивным генами прокариот являются гены, которые кодируют ферменты
- 1) постоянно необходимые клетке
- 2) участвующие в определенных процессах
- 3) формирующие специфический ответ
- 4) участвующие только в процессе транскрипции
- 25. Гены, входящие в состав лактозного оперона, кодируют ферменты, участвующие
- 1) в утилизации лактозы
- 2) в синтезе лактозы
- 3) в утилизации глюкозы
- 4) в утилизации галактозы
- 26. Лактозный оперон активируется, когда в окружающей среде
- 1) много лактозы и нет глюкозы
- 2) нет лактозы и много глюкозы
- 3) много лактозы и много глюкозы
- 4) нет лактозы и нет глюкозы
- 27. Транскрипция у эукариотических организмов идет в
- 1) ядре
- 2) цитоплазме
- 3) вакуолях
- 4) аппарате Гольджи
- 28.У прокариотических организмов транскрипция идет в
- 1) цитоплазме
- 2) вакуолях
- 3) мезосомах
- 4) тилакоидах
- 29. ДНК-зависимые РНК-полимеразы включают во вновь синтезируемую цепь в процессе транскрипции
- 1) РНК рибонкулеотиды
- 2) РНК дезоксирибонкулеотиды
- 3) ДНК рибонкулеотиды
- 4) ДНК дезоксирибонкулеотиды
- 30. В состав большинства днк-зависимых рнк-полимераз прокариот входит количество субъединиц
- 1) шесть

2) пять 3) четыре 4) восемь 31. Субъединичный состав кор-фермента днк-зависимой рнк-полимеразы прокариот представлен 1) 2α-β-β'-ω 2) α - β - β '- ω 3) 2α - β - β '- ω - σ 4) 2α - β - β '- σ 32. о -субъединица фермента днк-зависимой рнк-полимеразы прокариот осуществляет 1) специфическое узнавание промоторных элементов ДНК 2) связывание всех субъединиц фермента 3) реакцию синтеза молекулы РНК 4) восстановление денатурированной РНК-полимеразы 33. α -субъединица фермента днк-зависимой рнк-полимеразы прокариот осуществляет 1) связывание всех субъединиц фермента 2) реакцию синтеза молекулы РНК 3) восстановление денатурированной РНК-полимеразы 4) специфическое узнавание промоторных элементов ДНК 34. β -субъединица фермента днк-зависимой рнк-полимеразы прокариот осуществляет 1) реакцию синтеза молекулы РНК 2) восстановление денатурированной РНК-полимеразы 3) специфическое узнавание промоторных элементов ДНК 4) связывание всех субъединиц фермента 35. ω -субъединица фермента днк-зависимой рнк-полимеразы прокариот осуществляет 1) восстановление денатурированной РНК-полимеразы 2) специфическое узнавание промоторных элементов ДНК 3) связывание всех субъединиц фермента 4) реакцию синтеза молекулы РНК 36. Специфическое узнавание промоторов у прокариот обеспечивает субъединица рнкполимеразы 1) σ 2) a 3) ß 37. Связывание между собой всех субъединиц рнк-полимеразы прокариот обеспечивает субъединица 1) a 2) ß

38. Реакцию синтеза молекулы РНК у прокариот катализирует субъединица РНК -полимеразы

3) ω 4) σ

β

2) ω
3) o
4) α
39. Восстановление денатурированной молекулы рнк-полимеразы прокариот обеспечивает субъединица
•
0
σ
lpha
β
40. Субъединичный состав фермента ДНК-зависимой РНК-полимеразы прокариот
представлен
1) $2\alpha - \beta - \beta' - \omega - \sigma$
2) α-β-β'-ω
3) 2α-β-β'-ω
4) 2α-β-β'-σ
41. Кор-фермент ДНК-зависимой РНК-полимеразы прокариот участвует в
1) элонгации и терминации
2) узнавании промотора
3) связывании и инициации
4) уходе с промотора
42. Каталические центры в молекуле РНК-полимеразы прокариот находятся в субъединицах
$1) 2\alpha$
2) ββ'
3) αβ
4) β'σ
43. ДНК-зависимая РНК-полимераза прокариот
1) каждый раз собирается из 5 типов субъединиц
2) всегда находится в состоянии кор-фермента
3) находится в полностью собранном состоянии
4) каждый раз собирается из 16 типов субъединиц
44. Тата-бокс и блок Прибнова консервативные элементы прокариот в области
1) промотора
2) терминатора
3) сайта инициации
4) энхансера
45. Последовательность нуклеотидов ДНК, узнаваемая РНК-полимеразой как старт синтеза
РНК - это
1) промотор
2) терминатор
3) энхансер
4) сайленсер
46. Инициация транскрипции у прокариот начинается с
1) освобождения о-субъединицы от РНК-полимеразы
1) освооомдения о-суовединицы от 1 ин-полимеразы

- 2) образования транскрипционного пузыря
- 3) формирования комплекса с Rho-белком
- 4) сборки РНК-полимеразы
- 47. Последовательность нуклеотидов ДНК, с которой связываются белки-репрессоры, что приводит к снижению и полному подавлению синтеза РНК, называется
- 1) сайленсер
- 2) промотор
- 3) терминатор
- 4) энхансер
- 48. Последовательность нуклеотидов ДНК, с которой связываются факторы транскрипции, приводящие к стимуляции синтеза РНК это
- 1) энхансер
- 2) сайленсер
- 3) промотор
- 4) терминатор
- 49. Последовательность нуклеотидов ДНК, на которой завершается синтез РНК во время транскрипции это
- 1) терминатор
- 2) энхансер
- 3) сайленсер
- 4) промотор
- 50. Постепенное удлиннение растущей цепи РНК во время транскрипции происходит на этапе
- 1) элонгации
- 2) узнавания промотра
- 3) инициации
- 4) терминации
- 51. Завершение синтеза молекулы РНК во время транскрипции происходит на этапе
- 1) термирнации
- 2) элонгации
- 3) узнавания промотра
- 4) инициации
- 52. Сигналом для окончания синтеза молекулы РНК во время транскрипции у прокариот служат
- 1) ГЦ-богатые участки в конце генов
- 2) ТАТА- повторы
- 3) ТАТА-бокс и блок Прибнова
- 4) формирующиеся ДНК-РНК гибриды
- 53. Rho-фактор у прокариот во время транскрипции участвует в
- 1) окончании синтеза молекулы РНК
- 2) сборке холофермента РНК-полимеразы
- 3) специфичном связывании РНК-полимеразы с промотором
- 4) образовании транскрипционного пузыря
- 54. Рнк полимераза І эукариот служит для синтеза

1) 5,8S, 18S и 28S рибосомальных РНК

- 2) мРНК и некоторых малых ядерных РНК
- 3) тРНК, малых ядерных РНК, 5S рибосомальной РНК
- 4) транскриптов митохондриального генома
- 55. РНК полимераза II эукариот служит для синтеза
- 1) мРНК и некоторых малых ядерных РНК
- 2) тРНК, малых ядерных РНК, 5S рибосомальной РНК
- 3) транскриптов митохондриального генома
- 4) 5,8S, 18S и 28S рибосомальных РНК
- 56. РНК полимераза III эукариот служит для синтеза
- 1) тРНК, малых ядерных РНК, 5S
- 2) транскриптов митохондриального генома
- 5,8S, 18S и 28S рибосомальных РНК
- 4) мРНК и некоторых малых ядерных РНК
- 57. Синтез 5,8s, 18s и 28s рибосомальных РНК происходит с участием фермента
- 1) ядерной РНК полимеразы І
- 2) ядерной РНК полимеразы II
- 3) ядерной РНК полимеразы III
- 4) митохондриальной РНК-полимеразы
- 58. Синтез матричных РНК и некоторых малых ядерных РНК происходит с участием фермента
- 1) ядерной РНК полимеразы II
- 2) ядерной РНК полимеразы III
- 3) митохондриальной РНК-полимеразы
- 4) ядерной РНК полимеразы І
- 59. Синтез большинства малых ядерных РНК, транспортных РНК и 5s РНК происходит с участием фермента
- 1) ядерной РНК полимеразы III
- 2) митохондриальной РНК-полимеразы
- 3) ядерной РНК полимеразы І
- 4) ядерной РНК полимеразы II
- 60. Единицей транскрипции у прокариот является
- 1) оперон
- 2) ген
- 3) цистрон
- 4) транскриптом
- 61. Единицей транскрипции у эукариот является
- 1) ген
- 2) цистрон
- 3) транскриптом
- 4) оперон
- 62. Принцип асимметричности транскрипции означает, что
- 1) транскрибируется только одна матричная цепь ДНК
- 2) транскрибируется только одна смысловая цепь ДНК

- 3) рост цепи РНК идет только в направлении 5' 3'
- 4) РНК полимераза синтезирует комплиментарную реплику с транскрибируемого участка
- 63. Принцип униполярности транскрипции означает, что

1) рост цепи РНК идет только в направлении 5' 3'

- 2) РНК полимераза синтезирует комплиментарную реплику с транскрибируемого участка
- 3) транскрибируется только одна матричная цепь ДНК
- 4) транскрибируется только одна смысловая цепь ДНК
- 64. Принцип антипараллельности транскрипции означает, что

1) синтезируемая цепь РНК направлена антипараллельно транскрибируемому участку

- 2) рост цепи РНК идет только в направлении 5' 3'
- 3) РНК полимераза синтезирует комплиментарную реплику с транскрибируемого участка
- 4) транскрибируется только одна матричная цепь ДНК
- 65. Принцип комплементарности транскрипции означает, что

1) РНК полимераза синтезирует комплиментарную реплику с транскрибируемого участка

- 2) транскрибируется только одна матричная цепь ДНК
- 3) синтезируемая цепь РНК направлена антипараллельно транскрибируемому участку
- 4) рост цепи РНК идет только в направлении 5' 3'
- 66. РНК строится из
- 1) рибонуклеозидтрифосфатов
- 2) дезоксирибонуклеозидтрифосфатов
- 3) рибонуклеозидфосфатов
- 4) дезоксирибонуклеозидфосфатов
- 67. Превращение первичного транскрипта (пре-РНК) в зрелую РНК у эукариот происходит в результате
- 1) процессинга
- 2) транскрипции
- 3) репликации
- 4) репарации
- 68. Процессингу у эукариот подвергаются
- 1) все виды пре-мРНК
- 2) только предшественники рРНК
- 3) только предшественники тРНК
- 4) только предшественники мРНК
- 69. РНК, содержащие информацию о первичной структуре белков, относятся к
- 1) матричным РНК
- 2) рибосомальным РНК
- 3) транспортным РНК
- 4) малым ядерным РНК

- 70. РНК, которые осуществляют перенос аминокислот к рибосомам, относятся к
- 1) транспортным РНК
- 2) матричным РНК
- 3) рибосомальным РНК
- 4) малым ядерным РНК
- 71. РНК, входящая в состав рибосом, называется
- 1) рибосомальная РНК
- 2) малая ядерная РНК
- 3) транспортная РНК
- 4) матричная РНК
- 72. РНК, участвующие в сплайсинге и поддержании функций теломер, относятся к
- 1) малым ядерным РНК
- 2) транспортным РНК
- 3) матричным РНК
- 4) рибосомальным РНК
- 73. Отличие пре-тРНК эукариот от зрелой т-РНК заключается в том, что
- 1) антикодон не занимает «правильного» положения
- 2) отсутствует типичная структура «клеверного листа»
- 3) отсутствует антикодон, он формируется после созревания
- 4) молекула представляет собой кластер из нескольких тРНК
- 74. Удаление лишних нуклеотидов с концов в процессе созревания молекул РНК происходит под действием группы ферментов
- 1) нуклеаз
- 2) протеаз
- 3) протеиназ
- 4) лигаз
- 75. Эндонуклеазы способны
- 1) разрезать цепь нуклеотидов в середине
- 2) последовательно отщеплять нуклеотиды с концов
- 3) сшивать фрагменты нуклеотидных последовательностей
- 4) синтезировать недостающие участки последовательностей
- 76. Экзонуклеазы способны
- 1) последовательно отщеплять нуклеотиды с концов
- 2) сшивать фрагменты нуклеотидных последовательностей
- 3) синтезировать недостающие участки последовательностей
- 4) разрезать цепь нуклеотидов в середине
- 77. Процесс вырезания интронов из последовательности пре-мРНК называется
- 1) сплайсинг
- 2) процессинг
- 3) транскрипция
- 4) элонгация
- 78. Сплайсингом при созревании молекул мРНК называется процесс
- 1) вырезания интронов и сшивания экзонов
- 2) вырезания экзонов и сшивания интронов

- 3) удаление ГЦ-богатых участков с 3' конца
- 4) удаление АТФ (ГТФ) с 5' конца
- 79. При созревании мРНК со стороны 3' конца молекулы происходит наращивание

1) полиА-фрагмента

- 2) полиГ-фрагмента
- 3) полиЦ-фрагмента
- 4) полиУ-фрагмента
- 80. Полиадениловый участок со стороны 3' конца молекулы РНК необходим для
- 1) защиты от ферментативного распада
- 2) инициации трансляции
- 3) формирования вторичной структуры
- 4) формирования связи с рибосомой

Блок И Нуклеиновые кислоты

Выбрать один правильный ответ.

1. Функция гистоновых белков

1) обеспечивают укладку ДНК путем структурирования хроматина двух первых уровней

- 2) содержит гены, ответственные за синтез рРНК
- 3) участвуют в формировании самых высоких уровней упаковки ДНК
- 4) являются факторами регуляции
- 2. Спутник хромосомы
- 1) содержит гены, ответственные за синтез рРНК, поступающей в ядрышко
- 2) участвует в образовании ядрышка и содержит многочисленные гены, кодирующие рРНК
- 3) трехслойная пластинка, взаимодействующая с центромерным хроматином
- 4) участок моноцентрической метафазной хромосомы по одну сторону от центромеры, включая части обеих сестринских хроматид
- 3. На один виток спирали В- ДНК приходится пар нуклеотидов
- 1) 10
- 2) 12
- 3) 20
- 4) 25
- 4. На стабильность молекулы ДНК не влияют связи
- 1) дисульфидные
- 2) гликозидные
- 3) фосфодиэфирные
- 4) водородные
- 5. Уровень компактизации ДНК в хромосоме, представленный на схеме
- 1) нуклеомерный
- 2) нуклеосомный
- 3) хромомерный
- 4) хромонемный
- 6. Функции негистоновых белков

1) участвуют в формировании самых высоких уровней упаковки ДНК

- 2) являются регуляторами биосинтеза нуклеиновых кислот
- 3) обеспечивают укладку ДНК путем структурирования хроматина двух первых уровней
- 4) содержит гены, ответственные за синтез рРНК, поступающей в ядрышко
- 7. Кинетохор хромосомы
- 1) трехслойная пластинка, взаимодействующая с центромерным хроматином
- 2) содержит гены, ответственные за синтез рРНК, поступающей в ядрышко
- 3) участвует в образовании ядрышка и содержит многочисленные гены, кодирующие рРНК
- 4) участок моноцентрической метафазной хромосомы по одну сторону от центромеры, включая части обеих сестринских хроматид
- 8. Первичная структура ДНК определяется последовательностью нуклеотидов в полинуклеотидной цепи

1) в направлении 5 3 концу; за счет образования ковалентных 3,5 – фосфодиэфирных связей

- 2) в направлении 5 3 концу за счет образования нековалентных водородных связей
- 3) в направлении 3 5 концу; за счет образования ковалентных 3,5 фосфодиэфирных связей
- 4) в направлении 3 5 концу за счет образования нековалентных водородных связей
- 9. Уровень компактизации ДНК в хромосоме, представленный на схеме
- 1) хромомерный
- 2) нуклеомерный
- 3) нуклеосомный
- 4) хромонемный
- 10. Молекула азотистого основания, представленная на схеме
- 1) тимин
- 2)аденин
- 3) урацил
- 4) гуанин
- 11. Плечо хромосомы

1) участок моноцентрической метафазной хромосомы по одну сторону от центромеры, включая части обеих сестринских хроматид

- 2) содержит гены, ответственные за синтез рРНК, поступающей в ядрышко
- 3) трехслойная пластинка, взаимодействующая с центромерным хроматином
- 4) участвует в образовании ядрышка и содержит многочисленные гены, кодирующие рРНК
- 12. Уровень компактизации ДНК в хромосоме, представленный на схеме
- 1) хромонемный
- 2) нуклеомерный
- 3) хромомерный
- 4) нуклеосомный
- 13. Молекула азотистого основания, представленная на схеме

- 1) урацил
- 2)аденин
- 3) тимин
- 4) гуанин
- 14. Структура молекулы ДНК на схеме
- 1) третичная
- 2) вторичная
- 3) первичная
- 4) четвертичная
- 15. Ядрышковый организатор

1) совокупность вторичных перетяжек хромосомы, содержащих многочисленные гены, кодирующие рРНК

- 2) содержит гены, ответственные за синтез рРНК, поступающей в ядрышко
- 3) трехслойная пластинка, взаимодействующая с центромерным хроматином
- 4) участок моноцентрической метафазной хромосомы по одну сторону от центромеры, включая части обеих сестринских хроматид
- 16. Уровень компактизации ДНК в хромосоме, представленный на схеме
- 1) нуклеосомный
- 2) нуклеомерный
- 3) хромомерный
- 4) хромонемный
- 17. Молекула азотистого основания, представленная на схеме
- 1) аденин
- 2) урацил
- 3) тимин
- 4) гуанин
- 18. Тип молекулы РНК, представленный на схеме
- 1) микро
- 2) матричная
- 3) вирусная
- 4) транспортная
- 19. На один виток спирали А ДНК приходится пар нуклеотидов
- 1) 11
- 2) 20
- 3) 10
- 4) 25

Блок К Строение белков и ферментов

- 1. Тип связи, определяющий первичную структуру полипептидной молекулы белка
- 1) пептидная
- 2) водородная
- 3) гидрофильно гидрофобная

- 4) дисульфидная
- 2. Разрушение вторичной и третичной структуры полипептидной молекулы белка с сохранением первичной это
- 1) денатурация
- 2) гидролиз
- 3) ренатурация
- 4) коагуляция
- 3. Запасающую функцию выполняет белок
- 1) яичный альбумин
- 2) гемоглобин
- 3) коллаген
- 4) инсулин
- 4. Окислительно-восстановительные реакции катализируют
- 1) оксидредуктазы
- 2) трансферазы
- 3) лиазы
- 4) гидролазы
- 5. Вторичная β структура полипептидной молекулы белка образуется за счет

1) водородных связей между пептидными группами полипептидных цепей, расположенных параллельно

- 2) внутри цепочечных водородных связей между NH-группой одного остатка аминокислоты и CO-группой четвертого от нее остатка
- 3) внутри цепочечных водородных связей между NH-группой одного остатка аминокислоты и CO-группой второго от нее остатка
- 4) водородных связей между пептидными группами полипептидных цепей, расположенных антипараллельно
- 6. Простетическая группа сложных белков ретинальпротеинов представлена
- 1) витамином А
- 2) витамином В2
- 3) витамином В6
- 4) витамином РР
- 7. Высокая избирательность фермента обусловлена: тем, что он

1) связывается с субстратом в нескольких точках активного центра

- 2) катализирует превращение только одного субстрата
- 3) изменяет свою активность при постоянной концентрации
- 4) изменяет свою концентрацию в результате ускорения или торможения
- 8. Кофермент А это производное витамина
- 1) Пантотеновой кислоты
- 2) Рибофлавина
- 3) Пиридоксина
- 4) Никотиновой кислоты
- 9. Функцию активации и переноса ацильных групп в реакциях, катализируемых лигазами и трансферазами выполняют коферменты
- 1) Кофермент А

- 2) ФАД+
- 3) НАД+
- 4) Пиридоксаль фосфат
- 10. Определите вид структуры фрагмента полипептидной цепи белка, изображенного на схеме

1) вторичная а - структура

- 2) вторичная β структура
- 3) первичная
- 4) третичная
- 11. Тип связи, определяющий вторичную структуру полипептидной молекулы белка
- 1) водородная
- 2) пептидная
- 3) гидрофильно-гидрофобная
- 4) дисульфидная
- 12. Необратимое разрушение первичной структуры полипептидной молекулы белка до аминокислот это
- 1) гидролиз
- 2) денатурация
- 3) ренатурация
- 4) коагуляция
- 13. Транспортную функцию выполняет белок
- 1) гемоглобина
- 2) коллагена
- 3) актина
- 4) иммуноглобулина
- 14. Присоединение воды по месту разрыва связи при расщепление веществ катализируют ферменты
- 1) гидролазы
- 2) трансферазы
- 3) лиазы
- 4) изомеразы
- 15. Вторичная а структура полипептидной молекулы белка образуется за счет

1) внутри цепочечных водородных связей между NH - группой одного остатка аминокислоты и CO - группой четвертого от нее остатка

- 2) водородных связей между пептидными группами полипептидных цепей, расположенных параллельно
- 3) внутри цепочечных водородных связей между NH-группой одного остатка аминокислоты и CO-группой второго от нее остатка

- 4) водородных связей между пептидными группами полипептидных цепей, расположенных антипараллельно
- 16. Простетическая группа сложных белков флавопротеинов представлена
- 1) витамином В2
- 2) витамином А
- 3) витамином В6
- 4) витамином РР
- 17. Специфичность действия фермента обусловлена: тем, что он
- 1) катализирует превращение только одного субстрата
- 2) изменяет свою активность при постоянной концентрации
- 3) связывается с субстратом в нескольких точках активного центра
- 4) изменяет свою концентрацию в результате ускорения или торможения
- 18. Пиридоксаль фосфат это производное витамина
- 1) витамином В6
- 2) витамином А
- 3) витамином В2
- 4) витамином РР
- 19. Функцию переноса аминогрупп и декарбоксилирование аминокислот выполняют коферменты
- 1) Пиридоксаль фосфат
- 2) $\Phi A \Pi +$
- 3) Кофермент А
- 4) НАД+
- 20. Определите вид структуры фрагмента полипептидной цепи белка, изображенного на схеме

1) вторичная β-структура

- 2) первичная
- 3) вторичная α -структура
- 4) третичная
- 21. Основную роль в образовании третичной структуры полипептидной молекулы белка в пространстве выполняет связь

1) гидрофильно - гидрофобная

- 2) пептидная
- 3) водородная
- 4) дисульфидная
- 22. Восстановление исходной структурной формы полипептидной молекулы белка и ее функциональности называется
- 1) ренатурация
- 2) гидролиз

- 3) денатурация
- 4) коагуляция
- 23. Защитную функцию выполняет белок
- 1) иммуноглобулин
- 2) гемоглобин
- 3) коллаген
- 4) актин
- 24. Перенос радикалов от молекулы донора к молекуле акцептор катализируют
- 1) трансферазы
- 2) гидролазы
- 3) оксидредуктазы
- 4) изомеразы
- 25. Пространственная организация молекулы гемоглобина
- 1) четвертичная
- 2) вторичная
- 3) третичная
- 4) первичная
- 26. Сложные белки металлопротеины это
- 1) ферритин
- 2) цитохром
- 3) гемоглобин
- 4) яичный альбумин
- 27. Способность к регуляции у ферментов обусловлена тем, что они
- 1) изменяют свою активность при изменении концентрации
- 2) катализируют превращение только одного субстрата
- 3) связываются с субстратом в нескольких точках активного центра
- 4) катализируют однотипные превращения нескольких субстратов
- 28. Кофермент ФАД + это производное витамина
- 1) витамином В2
- 2) витамином А
- 3) витамином В6
- 4) витамином РР
- 29. Функцию переноса одноуглеродных фрагментов (класс трансферазы) выполняет кофермент
- 1) Тетрагидрофолиевая кислота
- 2) ФАД+
- 3) Кофермент А
- 4) НАД +
- 30. Определите вид структуры молекулы белка, изображенного на схеме

- 1) четвертичная
- 2) вторичная
- 3) третичная
- 4) первичная
- 31. Основную роль в образовании четвертичной структуры полипептидной молекулы белка в пространстве выполняет связь
- 1) между радикалами аминокислот на контактирующих поверхностях субъединиц
- 2) между радикалами аминокислот
- 3) пептидная между α аминогруппой одной аминокислоты и α карбоксильной группой другой аминокислоты
- 4) водородная между атомами пептидных групп
- 32. Взаимодействие денатурированных молекул белка с образованием более крупных частиц называется
- 1) коагуляция
- 2) гидролиз
- 3) ренатурация
- 4) денатурация
- 33. К структурным белкам относится
- 1) коллаген
- 2) гемоглобин
- 3) яичный альбумин
- 4) иммуноглобулин
- 34. Ферменты, катализирующие синтез сложных веществ из простых с использованием энергии АТФ
- 1) лигазы
- 2) трансферазы
- 3) лиазы
- 4) гидролазы
- 35. Активный центр фермента формируется при
- 1) скручивании полипептидной молекулы белка в третичную структуру
- 2) образовании вторичной структуры полипептидной молекулы белка
- 3) образовании первичной структуры полипептидной молекулы белка
- 4) образовании четвертичной структуры молекулы белка
- 36. Сложные белки гемопротеины это
- 1) цитохром
- 2) гемоглобин
- 3) ферритин
- 4) яичный альбумин
- 37. Нативные белки имеют структурную конфигурацию
- 1) третичную

- 2) вторичную β структура
- 3) вторичную α структура
- 4) первичную
- 38. Кофермент НАД + это производное витамина
- 1) витамином РР
- 2) витамином А
- 3) витамином В6
- 4) витамином В2
- 39. Функцию переноса водорода (электронов) в окислительно- восстановительных реакциях выполняет кофермент
- 1) ФАД+
- 2) Тетрагидрофолиевая кислота
- 3) Кофермент А
- 4) Тетрагидрофолиевая кислота