Биофармация на стыке науки и практики

Н. Б. Демина, ГБОУ ВПО Первый МГМУ им. И.М. Сеченова Минздрава России Новая аптека.-2015.-№3.- стр. 68-71

О том, что технология изготовления ЛС влияет на их терапевтическую эффективность, известно давно. Наука биофармация позволяет разработать инновационные подходы к созданию новых, более эффективных лекарственных форм и систем доставки лекарств.

История

Отправной точкой формирования современных требований к эффективности и безопасности ЛС можно считать 1938 г., именно в это время произошли смертельные отравления эликсиром сульфаниламида. Следующим этапом стала талидомидовая трагедия, после которой в 1962 г. требование представлять данные не только о токсичности, но и об эффективности ЛС стало обязательным для всех фармпроизводителей. Что примечательно, этот порядок распространялся и на препараты, которые были выведены на рынок ранее, начиная с 1938 г. Результатомэтого нововведения стало то, что 1000 ЛС, признанных «неэффективными», были удалены с рынка [1, 2]!

Для дженериков, так же как и для новых, оригинальных ЛС, с 1938 г. требовалось предоставление данных по исследованию токсичности. Однако это требование было не строгим, т. к. считалось, что все препараты, содержащие один и тот же активный ингредиент, эффективны одинаково, а если и обнаружена их терапевтическая неэквивалентность, то виноваты в этом погрешности в дозировании действующих веществ при изготовлении лекарственной формы (ЛФ) [3]. Так, в одном из исследований было установлено, что количество дигоксина в таблетках одного из производителей варьировало в диапазоне от 10 до 156%! Тем не менее, специалисты полагали, что при одинаковом составе ЛС будут биоэквивалентными.

С открытием терапевтической неэквивалентности непатентованных ЛС, после 1962 г. для всех дженериков (появившихся на рынке с 1938 г.) потребовалось подтверждение их эффективности и эквивалентности установленному бренду. Естественно, не все компании-производители дженериков сразу согласились с необходимостью проведения дополнительных токсикологических и клинических исследований своей продукции, начались судебные разбирательства. Внедрение обязательной оценки абсорбции и эквивалентности ЛС встречало сопротивление и непонимание.

Объяснение феномену терапевтической неэквивалентности дало новое научное направление фармацевтической науки биофармация. Ее рождение относят к началу 1960-х годов,

считая основоположниками американских ученых G. Levy [6. 7, 8, 9] и J. Wagner [10, 11].Сейчас биофармацию определяют как науку, изучающую терапевтическую эффективность ЛС в зависимости от физиологического статуса пациента, физико-химических характеристик активных фармацевтических субстанций (АФС), вида ЛФ и ее состава, пути введения препарата и от многофакторного воздействия на активное вещество в процессе производства, хранения, транспортировки и применения ЛС.

Путь введения

Конечно, за полвека в физиологии человека заметных изменений не произошло. Но внимание к пути введения ЛС, как к фармацевтическому фактору, влияющему на терапевтическую эффективность, значительно усилилось. Разработка ЛС начинается с подробного изучения физиологических условий пути введения, последствиями невнимания к которым являются развитие побочных эффектов и даже полная потеря активности АФС. Одно из таких условий – рН внутренней среды организма, его значение необходимо учитывать для оценки процесса абсорбции (табл. 1).

Таблица 1 Значения рН в различных отделах ЖКТ, при которых происходит абсорбция AФC

Отдел ЖКТ	Значение рН
Ротовая полость	5,0-8,5
Желудок (пустой)	1,0–1,5
Желудок (наполненный)	3,0–5,0
Тонкая кишка	6,0–6,5
Толстая кишка	7,0–7,5
Прямая кишка	7,2–7,4

Вспомогательные вещества

В настоящее время всем известно, что индифферентных вспомогательных веществ (ВВ) нет и что их использование должно быть научно обосновано. Много сказано и написано о возможном влиянии ВВ на фармакокинетику, стабильность при хранении и приеме (вплоть до наступления момента действия АФС). Биофармацевтические исследования послужили толчком для развития гигантской мировой индустрии нелекарственных ингредиентов с конкретными задачами: дезинтегрантов, супердезинтегрантов, для локализации высвобождения в нужном отделе ЖКТ, пролонгирования действия, создания депо на месяц, год! Следует отметить не только богатую номенклатуру ВВ, но и то, что производите-

ли выпускают их линейками, в которых марки отличаются размерами и морфологией частиц, насыпной плотностью, сыпучестью, что позволяет выбирать продукт, обеспечивающий однородность смешивания, а, следовательно, – дозирования.

Лекарственная форма

Ранее рассматриваемая только как форма, в которой пациент принимает лекарственное вещество, сегодня она уже по определению «обязана» обеспечивать терапевтическую эффективность. Нужно отметить, что номенклатура основных ЛФ сформировалась к середине XX века и к настоящему времени насчитывается немногим более 40 видов. Ее расширение идет за счет усовершенствований традиционных ЛФ. Так, например, в монографии на таблетки Государственной Фармакопеи XI издания указаны просто «таблетки», а в проекте монографии ГФ XII издания уже перечисляются таблетки с модифицированным, пролонгированным, ускоренным высвобождением.

В то же время активно ведутся исследования по созданию инновационных ЛФ с заданными фармакокинетическими характеристиками. Их результаты привели к изобретению множества различных систем доставки лекарств (СДЛ) на основе микро- и наноносителей АФС. Первые упоминания о наноразмерных СДЛ относятся к середине XX века, и сейчас их изучение и разработка новых видов продолжаются. Более 80% всех исследований относится к созданию ЛС на основе липосом и полимерных наночастиц. В настоящее время СДЛ применяются в клинике для лечения комбинированного иммунодефицита, различных онкологических заболеваний, грибковых инфекций.

Технология

С разработкой СДЛ начинается новый виток эволюции технологии ЛФ. В первую очередь это актуально для гидрофобныхЛС, демонстрирующих низкие показатели биодоступности. АФС помещают в мицеллы, липосомы, получают твердые дисперсии, соединениявключения, используют другие носители, т. е. применяют различные технологические приемы, позволяющие дезинтегрировать активное вещество до молекул, тем самым повысив его растворимость и абсорбцию. Но вопрос биофармацевтической коррекции легкорастворимых и абсорбирующихся лекарственных субстанций тоже не решается просто. Пролонгировать время их высвобождения и нахождения *in vivo*, снизить пиковые концентрации – сложная технологическая задача, для решения которой разработаны тысячи методов: от создания контейнерных технологий до химической модификации. Характер модификации поверхности, методы включения активного вещества, способы получения са-

мих носителей и многие другие факторы определяют стабильность, безопасность и эффективность создаваемых ЛС.

Наноустройства — это не научная фантастика, сегодня уже созданы ЛС с чипами. С их помощью информация о ритме сердца, температуре, сне, концентрации ЛС в крови пациента и прочих параметрах может быть передана на датчик, прикрепленный на кожу, отправлена на мобильный телефон или электронную почту врача, больного и родственников. Более того, чип напоминает пациентам о времени приема препарата. Такие устройства получили квалификацию «chip-in-a-pill», или «чип в таблетке [18, 19]. Кто должен производить такие ЛФ? Специалист по электронике? Очевидно, для этого необходимы коллективы специалистов, в числе которых обязательно должен быть провизор, поскольку фармация имеет большую специфику, свое преломление взглядов, она интегрирует знания различных научных направлений, имея строгие рамки собственных ограничений и требований.

Но и технологии и оборудование для традиционных ЛФ не остались в стороне от новаций. В 60-е годы XX столетия было убедительно показано, что гидрофобные скользящие вещества (стеараты кальция, магния, стеариновая кислота, тальк), широко применяемые в технологии твердых ЛФ, негативно влияют на биодоступность [9]. В частности, введение 2% стеарата магния в рецептуру капсул хлорамфиникола снижает скорость растворения антибиотика, а при введении 7,5% практически не происходит растворения лекарственного вещества. Кроме того, эти вспомогательные вещества небезопасны. Поэтому фармакопеей их количества ограничены в диапазоне 1-3%. Как можно минимизировать их количество? Ранее стеараты и тальк вводили внутрь таблеточной массы, затем ими стали опудривать гранулят, что позволяло снизить их количество, но приводило к образованию гидрофобной пленки на гранулах. Сегодня таблеточные прессы снабжаются дополнительными устройствами для опудривания формообразующих пуансонов, в результате необходимое количество скользящего вещества сокращается на порядок — до 0,1%. И биодоступность не страдает, и технология таблетирования обеспечивается, и экономия процесса повышается.

Физические свойства АФС

Речь идет об измельченности, полиморфизме, кристалличности, оптических свойствах лекарственных веществ. Фактически сегодня это вопросы нанотехнологии. Что касается измельченности, то это направление активно изучается, роль размеров частиц в технологии ЛС сегодня не вызывает сомнений, что же касается полиморфизма и оптических свойств, то, пожалуй, этим направлениям уделяется меньшее внимание. Но вот факты, которые из-

вестны сегодня: различия в терапевтической эффективности полиморфных форм субстанций, их стабильности, возможности перехода, говорят о необходимости подобных исследований. Крайне интересны вопросы влияния технологических процессов и условий переработки субстанций, таких как увлажнение водой и растворами склеивающих веществ, сушка в различных режимах, измельчение, прессование, а также стабильности и перехода полиморфных форм.

Таким образом, биофармация сводит воедино науку и практику в области фармацевтического производства. Позволяя усовершенствовать существующие и создавать инновационные ЛФ, тем самым, повышая эффективность лечения.