Министерство здравоохранения Российской Федерации государственное бюджетное образовательное учреждение высшего профессионального образования

ПЕРВЫЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ имени И.М.СЕЧЕНОВА

АННОТАЦИЯ ПРОГРАММЫ ДИСЦИПЛИНЫ «Биоорганическая химия»

(наименование дисциплины)

Направление подготовки (сп	правление подготовки (специальность) 31.05.01 Лечебное дело		
Квалификация: Врач общей	і практики		
Трудоемкость дисциплины	2	зачетные единиць	

Цель дисциплины:

Конечные цели освоения дисциплины:

- -формирование системных знаний о закономерностях химического поведения основных биологически важных классов органических соединений и биополимеров во взаимосвязи с их строением для использования этих знаний в качестве основы при изучении на молекулярном уровне процессов, протекающих в живом организме;
- -формирование умений оперировать химическими формулами органических соединений, выделять в молекулах реакционные центры и определять их потенциальную реакционную способность.

Задачи дисциплины:

Процесс изучения дисциплины направлен на формирование понимания роли биологически значимых органических соединений в качестве структурно-функциональных компонентов и молекулярных участников химических процессов, протекающих в живых организмах. В результате изучения дисциплины студент должен: Знать:

- 1. Концептуальные основы биоорганической химии: принципы классификации и основные правила систематической номенклатуры органических соединений; основы электронного и стереохимического строения молекул органических соединений; сопряжение и ароматичность как факторы повышенной термодинамической устойчивости систем. Электронные эффекты заместителей; типы органических реакций и реагентов. Факторы, определяющие реакционную способность соединений.
- 2. Важнейшие реакции свободнорадикального замещения, электрофильного присоединения, нуклеофильного присоединения и замещения, окисления и восстановления на примерах соответствующих монофункциональных классов органических соединений.
- 3. Специфические свойства поли- и гетерофункциональных органических соединений.
- 4. Структурные компоненты, свойства и структурная организация молекул липидов, углеводов, пептидов и белков, нуклеиновых кислот.
- 5. Строение важнейших представителей низкомолекулярных биорегуляторов (стероиды).

Уметь:

- 1. Классифицировать органические соединения и называть по структурным формулам типичные представители биологически важных веществ и лекарственных средств.
- 2. Выделять функциональные группы, кислотный и основный центры, сопряженные и ароматические фрагменты в молекулах для определения потенциальной реакционной способности органических соединений.
- 3. Прогнозировать направление и результат химических превращений органических соединений.

Владеть:

- 1. Проведением качественных реакций (экспериментально) на функциональные группы и характерные структурные фрагменты молекулы с объяснением визуально наблюдаемого результата.
 - 2. Правилами оформления результатов экспериментальных опытов в виде протокола.
- 3. Навыками работы с химической посудой, реактивами и соблюдения правил безопасной работы в химической лаборатории.

Место дисциплины в структуре ООП:

Дисциплина «Биоорганическая химия» является составной частью вариативной части блока дисциплин.

Содержание дисциплины:

Наименование		
	Содержание раздела	
раздела дисциплины	• •	
Основы строения и	Классификация и номенклатура	
реакционная	Химическая связь и взаимное влияние атомов	
способность моно-,	Реакционная способность углеводородов, спиртов, фенолов	
поли- и	тиолов и аминов	
гетерофункциональн	Реакционная способность альдегидов и кетонов	
ых органических	Реакционная способность карбоновых кислот и функциональных	
соединений	производных	
	Липиды	
	Стереохимические основы строения	
	Специфическая реакционная способность поли- и	
	гетерофункциональных соединений	
Биополимеры и их		
структурные	Углеводы (дисахариды, полисахариды)	
компоненты.	α-Аминокислоты, пептиды и белки	
Низкомолекулярные	Биологически важные гетероциклические соединения	
биорегуляторы	Нуклеиновые кислоты. Нуклеотидные коферменты	
	Низкомолекулярные биорегуляторы	
	Практические навыки	