ДИНАМИКА ИЗМЕНЕНИЯ СОДЕРЖАНИЯ ЛЕЙКОАНТОЦИАНОВ И ФЛАВОНОИДОВ В ЛИСТЬЯХ АРОНИИ ЧЕРНОПЛОДНОЙ В РАЗЛИЧНЫЕ ФАЗЫ ВЕГЕТАЦИИ

Е.И. Недолужко, Т.А. Брежнева, Е.Е. Логвинова, А.И. Сливкин. ФГБОУ ВО Воронежский государственный университет, Воронеж, Россия

Основные сведения

Флавоноиды и генетически относящиеся к этому же классу природных гетероциклических соединений лейкоантоцианы являются основными представителями Р-витаминактивных веществ, не ядовиты и отличаются многообразием фармакологического действия. В организме человека они действуют как антиоксидантное, противолучевое, спазмолитическое, антиязвенное, противоопухолевое, противовоспалительное, ранозаживляющее, гипотензивное, эстрогенное, бактерицидное, маточное, мочегонное средство.

Флавоноиды широко распространены в растительном мире. Особенно богаты флавоноидами, в том числе и антоцианидинами высшие растения, относящиеся к семействам розоцветных (различные виды боярышников, черноплодная рябина). Изучению этих перспективных в фармакологическом отношении БАВ, содержащихся в плодах рябины черноплодной, посвящены работы многих исследователей. В то же время состав БАВ листьев этого широко распространенного в различных географических зонах кустарника практически не изучен.

• <u>Цель работы</u>: изучить динамику изменения содержания лейкоантоцианов и флавоноидов в листьях рябины черноплодной в различные фазы вегетации, а так же определить антиокислительную активность (AOA) изучаемого растительного сырья.

• Объект исследования: высушенные листья рябины черноплодной (Aronia melanocarpa Ex.), заготовленные на территории Воронежской области в различные фазы вегетации растения (до бутонизации, в начале цветения, в начале плодоношения, в период созревания плодов).

Методика определения антоцианов в листьях аронии

Около 2 г (т.н.) измельченного и высушенного сырья помещали в коническую колбу со шлифом вместимостью 50 мл, добавляли 20 мл экстрагента (96%- ный этанол, подкисленным НС1 до концентрации 1%). Колбу присоединяли к обратному холодильнику и нагревали на кипящей водяной бане в течение 3,5 часов. Затем колбу охлаждали до комнатной температуры, извлечение фильтровали через бумажный фильтр в мерную колбу вместимостью 25 мл. После соответствующих разведений (в 250 раз) пробу анализировали на спектрофотометре «Hitachi U-1900». О количестве антоцианов, перешедших из сырья в извлечение судили по величине оптической плотности в характерном для антоцианов максимуме поглощения при $\lambda =$ $545\pm 2 \text{ HM}.$

Формула для расчета содержания антоцианов в исследуемом сырье

Содержание суммы антоцианов в пересчете на цианадин-3-О-глюкозид в абсолютно сухом сырье в процентах (X) вычисляли по формуле:

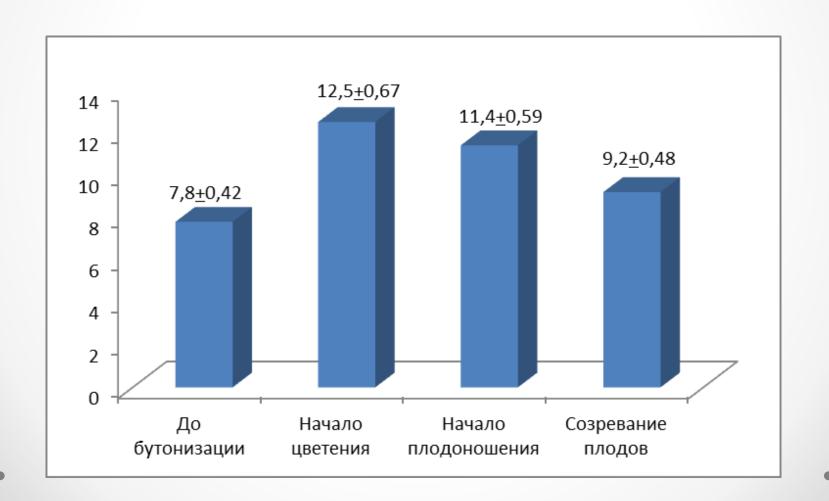
X=A*20*50*25*25*100/ E*a*5*5*5* (100-W), где X—содержание лейкоантоцианов в сырье в пересчете на цианидин-3-О-глюкозид, %

А — оптическая плотность полученного раствора; а- навеска сырья, г; Е-удельный показатель поглощения цианидин-3-О-глюкозида (100[1]); W- влажность сырья, %.

Методика определения флавоноидов в листьях аронии

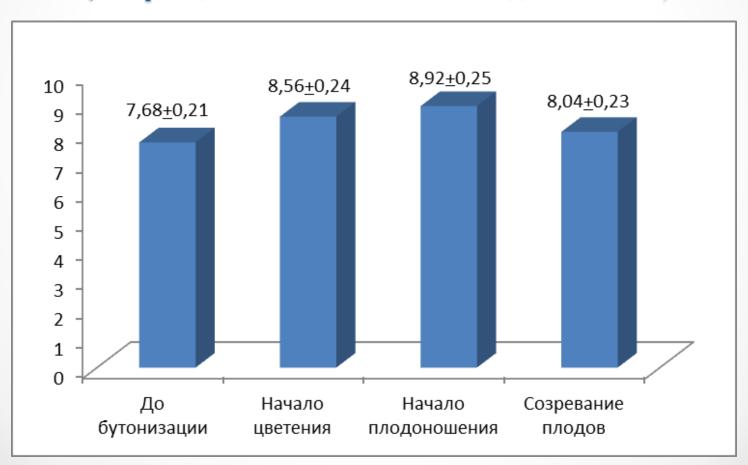
Около 1 г (т.н.) измельченного и высушенного сырья помещали в коническую колбу со шлифом вместимостью 100 мл, добавляли 50 мл экстрагента (70% - ный этанол). Колбу присоединяли к обратному холодильнику и нагревали на кипящей водяной бане в течение 1 часа. После охлаждения извлечение фильтровали в мерную колбу вместимостью 50 мл. После соответствующих разведений (в 5 раз) пробу анализировали на спектрофотометре «Hitachi U-1900». Количественное определение суммы флавоноидов в пересчете на рутин осуществляли спектрофотомерически при λ= 410нм величине оптической плотности в максимуме поглощения комплекса флавоноидов со спиртовым раствором алюминия хлорида. В качестве стандартного вещества использовали 0,05% спиртовой раствор рутина, спектр поглощения которого с алюминия хлоридом предлагаемых условиях близок со спектром поглощения образующегося комплекса.

Формула для расчёта содержания флавоноидов в сырье

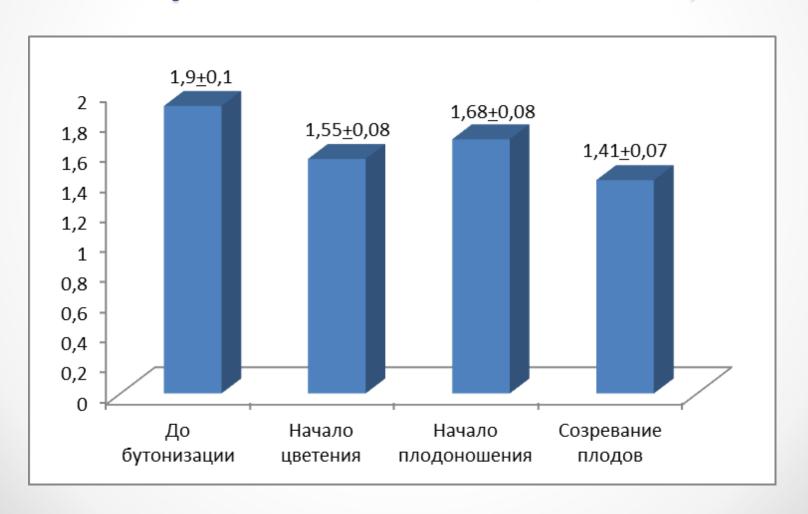

Количественное содержание флавоноидов в сырье в пересчете на рутин проводили по формуле:

$$X$$
, % = $\frac{Dx \times X$ ст,% $\times Vp \times Vu \times 100}{D0 \times a \times Va \times Vp$ (ст) $\times (100-W)$, где

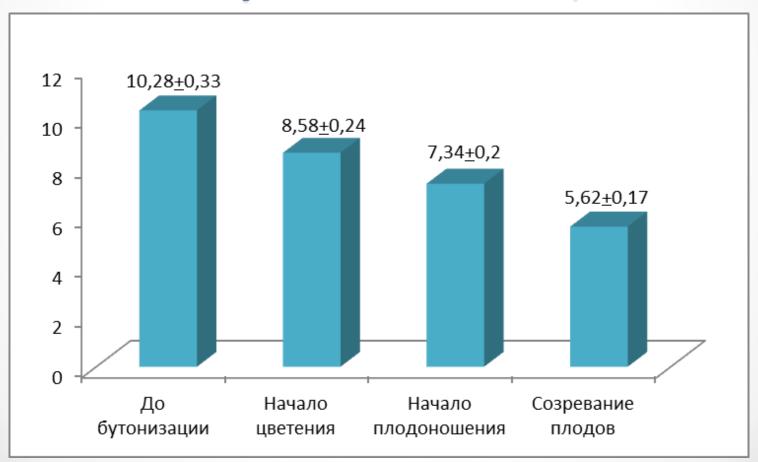
 D_x — оптическая плотность исследуемого образца; D_0 — оптическая плотность стандартного раствора рутина; V_p — объем разведения пробы, мл; $V_{p(cm)}$ — объем разведения стандартного раствора рутина, мл; V_a — объем пробы, взятой на анализ, мл; V_u — объем полученного извлечения, мл; X_{cm} — концентрация стандартного раствора рутина, %; анавеска сырья, z; w- влажность сырья, z;


Зависимость содержания лейкоантоцианов в листьях аронии от фазы вегетации растения

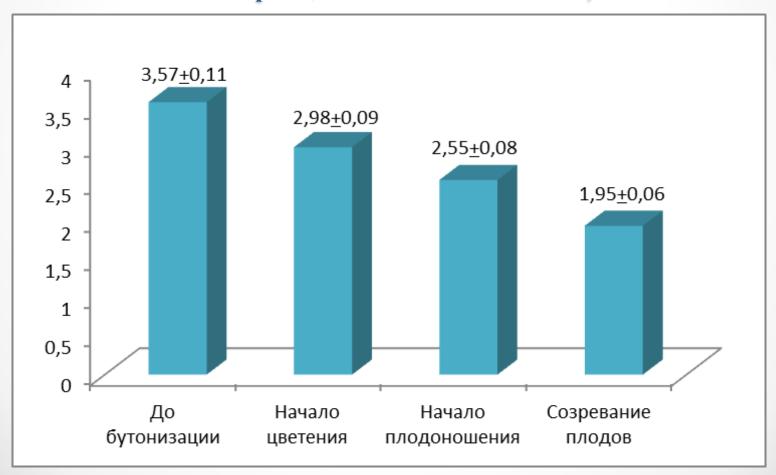
(в пересчете на цианидин-3-О-глюкозид, % экстракция 96%-ным этанолом подкисленным)


Зависимость содержания БАВантиоксидантов в листьях аронии от фазы вегетации растения

(в пересчете на кверцетин, % (экстракция 96%-ным этанолом подкисленным)


Зависимость содержания флавоноидов в листьях аронии от фазы вегетации растения

(в пересчете на рутин, % экстракция 96%-ным этанолом подкисленным)


Зависимость содержания БАВантиоксидантов в листьях аронии от фазы вегетации растения

(в пересчете на рутин, % экстракция 70%-ным этанолом)

Зависимость содержания БАВантиоксидантов в листьях аронии от фазы вегетации растения

(в пересчете на кверцетин, % экстракция 70%-ным этанолом)

Таблица 1 - Количественное содержание флавоноидов, лейкоантоцианов, а так же БАВ-антиоксидантов в листьях аронии, заготовленных в различные фазы вегетации

Фазы вегетации растения	гации Экстракция 96%-ным		Содержание в листьях. Экстракция 70%-ным этанолом		
	Лейкоанто- цианы в пере- счете на ци- анидин-3 О- глюкозид, %	БАВ-анти- оксиданты в пересчете на кверцетин, %	Флаво-ноиды в пересчете на рутин, %	БАВ-анти- оксиданты в пере-счете на рутин, %	БАВ-анти- оксиданты в пересчете на кверцетин, %
До буто- низации	7,80±0,42	7,68±0,21	1,90±0,10	10,28±0,33	3,57±0,11
Начало цветения	12,50±0,67	8,56±0,24	1,55±0,08	8,58±0,24	2,98±0,09
Начало плодо- ношения	11,40±0,59	8,92±0,25	1,68±0,08	7,34±0,20	2,55±0,08
Созревание плодов	9,2±0,48	8,04±0,23	1,41±0,07	5,62±0,17	1,95±0,06

Выводы:

- Листья аронии, заготовленные во все фазы вегетации являются перспективным источником БАВ-антиоксидантов, поскольку антиокислительная активность сырья очень высока. При этом большее количество БАВ-антиоксидантов извлекается из сырья подкисленным этанолом, что позволяет предположить существенный вклад лейкоантоцианов в данный вид активности сырья.
- Сравнение данных по фазам вегетации листьев позволяет отметить максимальное содержание в них лейкоантоцианов в начале цветения, а флавоноидов в период до бутонизации, в это же время отмечена и максимальная антиоксидантная активность листьев (расчет по сумме БАВ-антиоксидантов, извлекаемых нейтральным 70%-ным этанолом).
- В то же время АОА листьев, оцениваемая по БАВ, извлекаемым подкисленным 96%-ным этанолом максимальна в начале плодоношения растения, хотя отличия от данных по другим фазам вегетации не так велики. Можно предположить, что некоторые несоответствия в полученных данных обусловлены наличием в сырье и других классов БАВ-антиоксидантов, давших положительные результаты при их качественном определении, таких как органические кислоты, дубильные вещества, катехины.