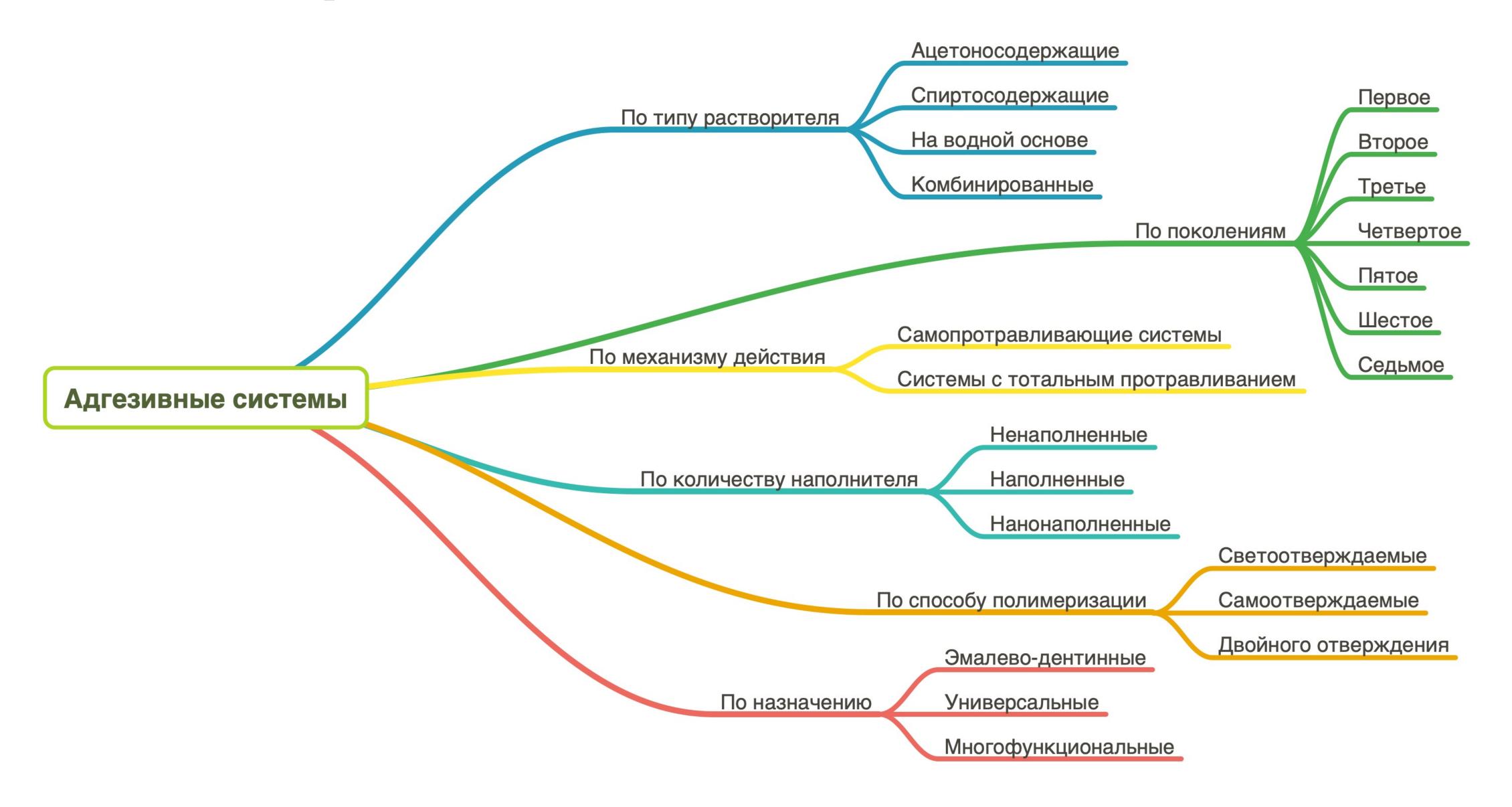


История развития адгезивных систем

д.м.н., профессор Маргарян Э.Г.

Москва

Адгезия и адгезивные системы в стоматологии


Адгезия Adhesion — прилипание

Связь между приведенными в контакт разнородными поверхностями, возникающая как результат действия межмолекулярных сил или сил химического взаимодействия. Адгезия определяет прочность склеивания, связи полимеров с наполнителями, лаковых пленок с подложками и т. д.

Адгезивная система

Материал, включающий основные компоненты (протравку, праймер, бонд) в различных комбинациях и обеспечивающий микромеханическую и химическую связь стоматологических материалов с твердыми тканями зуба.

Классификация адгезивных систем

История развития адгезивных систем

Швейцарский химик Оскар Хаггер (сотрудник компании Amalgamated dental) получает патент на первый дентальный адгезив

Адгезив предназначен для соединения твердых тканей зуба с композитным материалом

Состав адгезива образца 1949 года:

Глицеролфосфорная кислота + Сульфиновая кислота (инициатор)

Первые исследования «структуры», которую впоследствии назовут гибридным слоем

Первый отчет об изменениях в дентине, стимулированных кислотным мономером (основой адгезива)

Майкл Буонокоре описал результаты исследования, показавшие, что пломбировочный материал на основе акриловых смол имеет лучшую адгезию с эмалью после обработки последней кислотой.

Он предложил использовать 85% ортофосфорную кислоту для обработки дентина и эмали для обеспечения лучшей ретенции тканей зуба с пломбировочным материалом

1968 ГОД

Исследователями Майклом Буонокоре и Джоном Гвинеттом была предложена менее агрессивная концентрация кислоты для травления тканей

Так появился эталон — 37% ортофосфорная кислота как главное вещество для удаления смазанного слоя

Развитие адгезивной стоматологии в течение двадцати лет после открытия Буонокоре происходило очень медленно и без особых успехов. Связано это было, в первую очередь, с проблемами сцепления с дентином

Подтверждение наличия смазанного слоя с помощью сканирующего электронного микроскопа

Смазанный слой – это слой дентинных опилок толщиной 1.0 мкм.

Состав: разрушенный гидроксиапатит и фрагментированный денатурированный коллаген

Методы удаления смазанного слоя

- 1. Нанесение на поверхность дентина протравочного геля и его дальнейшее смывание
- 2. Использование кислотных праймеров. Они проникают сквозь смазанный слой, соединяются с ним и изменяют его структуру.

Нобуо Накабайаши описывает образование гибридного слоя.

Было установлено, что при проникновении смол в протравленный кислотой дентин, формируется новая структура: матрица смолы + коллагеновые фибриллы

Именно эта структура получила название *«гибридный слой»*

1985 ГОД

Нобуо Накабайаши высказал мнение, что бондинг с дентином имеет микромеханическую ретенцию, как это возникает при соединении их к эмали. В дальнейшем исследования показали, что адгезия у влажному дентину в несколько раз выше, чем к пересушенному.

Поколения адгезивных систем

Первое поколение адгезивных систем появилось в середине 70-х гг. ХХ в. На уровне эмали адгезия обеспечивалась микромеханической фиксацией бонда. На уровне дентина механизм связи был основан на ионном взаимодействии со смазанным слоем.

Эти материалы содержали бифункциональные молекулы, которые одним концом связывались с ионами кальция в смазанном слое, а другим — с мономером в составе композиционного материала.

Представителем этого поколения является Cosmic Bond. Сила сцепления с дентином составляла 1–3 МПа, что явно недостаточно и об этом свидетельствовали отрицательные клинические результаты.

2

Второе поколение адгезивных систем появилось в конце 70-х гг. XX в. и характеризовалось незначительным увеличением силы сцепления с дентином до 4–8 МПа. Представители этого поколения: Bondlite, DualCure, Scotchbond, Creation Bonding Agent.

Большинство из них представляло собой смесь эфиров фосфорной кислоты со смолами (Bis-GMA или HEMA) без наполнителя. Механизм связи с дентином попрежнему основывался на ионном взаимодействии со смазанным слоем. Клинические результаты показали, что большинство реставраций становились несостоятельными в течение первых двух лет.

Исследования in vitro показали, что связь смазанного слоя с дентином недостаточная и нестабильная, что вызывает разгерметизацию между пломбой и зубом. Несмотря на некоторые улучшения клинических результатов, требовалось дальнейшее совершенствование этих материалов.

Третье поколение адгезивных систем появилось в середине 80-х гг. ХХ в. Главное их отличие от предыдущих поколений — обработка дентина для модификации смазанного слоя. Как правило, это были трехбутылочные системы, включавшие двухкомпонентный праймер (Primer A, Primer B) и бонд (Bond). Эмаль протравливалась отдельно 37% фосфорной кислотой, а обработка дентина осуществлялась праймером, содержащим органическую кислоту (ЭДТА, малеиновую кислоту), гидрофильный мономер (4-МЕТА или НЕМА) и растворитель (спирт или ацетон), что позволяло повысить проницаемость дентина. Модификация смазанного слоя органической кислотой позволяла гидрофильному мономеру пропитывать его, обеспечивая связь с поверхностным слоем дентина. Несмотря на модификацию смазанного слоя, адгезия к дентину оставалась достаточно низкой (10–15 МПа).

Завершающий этап адгезивной подготовки включал нанесение бонда, содержащего гидрофобные мономеры (Bis-GMA; UDMA; TEGDMA). Представители этого поколения — A.R.T. Bond, All- bond, Denthesive, Gluma, Scothbond 2, Superbond, Tenure, Metabond, Amalgambond, Syntac Classic, XR Bond и др. Отдаленные клинические результаты применения этих адгезивных систем были лучше, но работа с ними требовала много времени в силу сложной техники использования.

Современные исследования показали, что для компенсации полимеризационной усадки композиционных материалов, составляющей 1,6–5 %, минимальная сила сцепления с твердыми тканями зуба должна составлять 18–20 МПа

На сегодняшний день адгезивные системы 1—3-го поколений практически не используются в стоматологической практике. Это обусловлено низкими показателями силы сцепления с тканями зуба, в первую очередь с дентином, а также нестабильностью этого соединения.

Четвертое поколение адгезивных систем считается на сегодняшний день «золотым стандартом» в адгезивной стоматологии, благодаря надежности и универсальности, проверенных временем. Доля этих материалов на стоматологическом рынке невысокая (15–20%), однако они имеют стабильный спрос. Представители этого поколения — All-Bond 2, Amalgam- Bond Plus, OptiBond FL, Perma Quick, ScotchBond Multipurpose Plus, Solid Bond, Definite Multibond.

Как правило, системы 4-го поколения представлены двумя бутылочками: праймером и бондом. Техника их использования включает минимум *три этапа*: протравливание, прайминг, бондинг.

Преимущества: высокая сила адгезии к эмали и особенно к дентину (в среднем более 20 МПа), хорошие отдаленные клинические результаты, многофункциональность.

Недостатки: сложность в работе, высокая чувствительность к на-рушению этапов работы, риск передачи инфекции, достаточно высокая цена.

Представители четвертого поколения адгезивных систем

ScotchBond Multipurpose Plus

OptiBond FL

Пятое поколение адгезивных систем появилось в середине 90-х гг. ХХ в. Они были созданы благодаря двум факторам: желанию стоматологов упростить процесс адгезивной подготовки и уменьшить риск передачи инфекции. Совершенствование этих материалов проводилось в направлении сокращения количества компонентов адгезивной системы, этапов и общего времени адгезивной подготовки. Эта группа материалов представ- лена так называемыми однобутылочными адгезивными системами (one- bottle systems), у которых праймер и бонд находятся в одном растворе. Классическая техника их использования включает минимум два этапа: тотальное протравливание твердых тканей зуба (15–30 с) и аппликацию смеси праймербонд (20–30 с) с последующей полимеризацией.

Представители этой группы — Exite, Gluma Comfort Bond (+Desensitizer), One Step (Plus), OptiBond Solo (Plus), PQ1, Prime&Bond NT, XPbond, Single Bond, Adper Single Bond 2, Tenur Quick, Easy Bond, Fuji Bond LC, One Coat Bond, Solobond M, AdmiraBond.

Преимущества — высокие показатели силы сцепления с эмалью и дентином; хорошие отдаленные клинические результаты; удобство в работе, меньшее время и количество этапов работы, совместимость со всеми светоотверждаемыми материалами.

Недостатки — адгезия к эмали превышает силу сцепления с дентином, иногда значительно, что приводит к отрыву реставрации от дентина

Представители пятого поколения адгезивных систем

Adper Single Bond 2

OptiBond Solo Plus

6

Шестое поколение включает две большие группы материалов: двухшаговые и одношаговые системы. В литературе эти группы часто называют самопротравливающими праймерами и самопротравливающими адгезивами соотвественно.

Преимущества — более простая и быстрая методика работы, почти полное отсутствие постоперативной чувствительности, более высокие показатели сцепления с дентином в сравнении с однобутылочными системами, многофункциональность, подобная системам 4-го поколения.

Недостатки — недостаточная эффективность протравливания интактной эмали и склерозированного дентина; хранение, как правило, в холодильник; высокая цена.

Самопротравливающие праймеры на сегодняшний день представлены:

- Системами «праймер с протравкой + бонд» (2-3 бутылочки): Clearfil Liner Bond, Clearfil Liner Bond 2V, Clearfil SE Bond, AdheSE, FL-Bond, Contax, Nano-Bond;

- Системами

«самопротравливающий агент + праймер с бондом» (2 бутылочки): NRC с Prime&Bond NT, OptiBond Solo Plus Self-Etch Adhesive System, One Step (Plus) с Tyrian SPE.

Первые версии самопротравливающих адгезивов появились в середине 90-х гг. ХХ в.

Кардинальным отличием от самопротравливающих праймеров является одномоментное проведение протравливания, прайминга и бондинга, что позволяет снизить затраты во времени

Представители этой группы — FuturaBond (NF), Etch&Prime 3.0, Adper Promt L-Pop, Xeno III, One-Up Bond F, Touch&Bond, Tenure UniBond.

Преимущества — отсутствует этап протравливания и смывания, более короткое время адгезивной подготовки, очень простая методика работы, низкий риск появления постоперативной чувствительности

Недостатки — отсутствие отдаленных клинических результатов их использования, большие разбежки в показателях сцепления с эмалью и дентином; низкая эффективность протравливания интактной эмали и склерозированного дентина

Самопротравливающие адгезивы 7-го поколения являются последней разработкой в адгезивной стоматологии, но по многим характеристикам похожи на самопротравливающие адгезивы 6-го поколения. Отличие заключается только в отсутствии этапа смешивания компонентов, т.к. эти системы представлены одним готовым раствором, содержащим протравку, праймер и бонд.

Ассортимент материалов этой группы значительно расширился в течение последних 1–2 лет. Представители — i-Bond Gluma inside (SelfEtch), Xeno IV, Brush&Bond, Adper EasyBond, AdheSE One, G-Bond, Optibond All in One.

Преимущества — очень простая и быстрая методика работы, почти полное отсутствие постоперативной чувствительности, низкий риск передачи инфекции.

Недостатки — отсутствие отдаленных клинических результатов их использования, эффективность протравливания твердых тканей зуба и стабильность гибридного слоя под вопросом, недостаточная универсальность в применении.

Спасибо!

margaryan_e_g@staff.sechenov.ru