федеральное государственное автономное образовательное учреждение высшего образования Первый Московский государственный медицинский университет им. И.М. СеченоваМинистерства здравоохранения Российской Федерации (Сеченовский Университет)

Институт Фармации им. А.П. Нелюбина Кафедра аналитической, физической и коллоидной химии

Методические материалы по дисциплине:

Химия биогенных элементов

основная профессиональная образовательная программа высшегообразования - программа специалитета

33.05.01 Фармация

федеральное государственное автономное образовательное учреждение высшего образования Первый Московский государственный медицинский университет им. И.М. СеченоваМинистерства здравоохранения Российской Федерации (Сеченовский Университет)

Институт Фармации им. А.П. Нелюбина Кафедра аналитической, физической и коллоидной химии

Методические материалы по дисциплине:

Химия биогенных элементов

основная профессиональная образовательная программа высшегообразования - программа специалитета

33.05.01 Фармация

Оценочные средства, рекомендованные к использованию при проведении промежуточной аттестации при освоении обучающимися в ПМГМУ им.И.М.Сеченова Минздрава России образовательных программ по химии биогенных элементов

Институт фармации им. А.П. Нелюбина

Кафедра аналитической, физической и коллоидной химии

Профессиональное образование

Высшее образование – специалитет

Программа специалитета

33.05.01 Фармация Квалификация 65 Провизор

Дисциплина Химия биогенных элементов

Рекомендуемый этап использования оценочных средств: промежуточная аттестация.

Вид и тип оценочного средства: тестовые задания этапа промежуточной аттестации

Разработчик Слонская Т.К.

1. Тема 1. Растворы. Способы выражения состава растворов. Тестовые задания с выбором одного или нескольких правильных ответов

№ OC	Задание	Ответ
001	Масса навески натрия гидроксида, необходимая для приготовления 230 мл раствора с концентрацией 0,6 моль/л равна: 1) 5,52 г 2) 55,2 г 3) 0,552 г 4) 552 г	1
002	Масса навески калия гидроксида, необходимая для приготовления 200 мл раствора с концентрацией 0,5 моль/л равна: 1) 2,8 г 2) 5,6 г 3) 0,56 г 4) 0,28 г	2
003	Масса навески натрия хлорида, необходимая для приготовления 130 мл раствора с концентрацией 0,2 моль/л равна: 1) 152 г 2) 0,152 г 3) 1,52 г 4) 15,2 г	3
004	Масса азотной кислоты, содержащаяся в 200 мл раствора с концентрацией 0,1 моль/л равна: 1) 1,26 г 2) 12,6 г 3) 0,126 г 4) 2,52 г	1
005	Рассчитайте массу навески калия сульфата, необходимую для приготовления 100 мл раствора с концентрацией 0,6 моль/л 1) 10,44 г 2) 1,044 г 3) 104,4 г 4) 0,104 г	1
006	Рассчитайте массу навески натрия гидрокарбоната, необходимую для приготовления 130 мл раствора с концентрацией 0,5 моль/л 1) 5,46 г 2) 54,6 г 3) 0,546 г 4) 10,92 г	1
007	Рассчитайте массу навески бария хлорида, необходимую для	1

	приготовления 300 мл раствора с концентрацией 0,8 моль/л	
	1) 49,9 г 2) 0,499 г 3) 4,99 г 4) 24,99 г	
008	Рассчитайте массу навески кальция гидроксида, необходимую	4
	для приготовления 200 мл раствора с концентрацией 0,001	
	моль/л.	
	1) 0,023 г 2) 0,0112 г 3) 0,23 г 4) 0,0148 г	
009	Рассчитайте массу навески железа(II) сульфата, необходимую	1
	для приготовления 500 мл раствора с концентрацией 0,2 моль/л	
	1) 15,2 г 2) 1,52 г 3) 151,8 г 4) 0,152 г	
010	Рассчитайте массу навески серебра нитрата, необходимую для	1
	приготовления 450 мл раствора с концентрацией 0,5 моль/л	
	1) 38,25 г 2) 3,85 г 3) 0,38 г 4) 19,11 г	

Тема 2. Растворы. Эквивалент. Определение фактора эквивалентности.

No	Задание	Ответ
OC 001	Фактор эквивалентности для соли KHSO ₄ в реакции	1
001	•	1
	$KHSO_4 + BaCl_2 \Leftrightarrow BaSO_4 + KCl + HCl$ равен: 1) 1/2 2) 1/3 3) 1,0 4) 2,0.	
002	Фактор эквивалентности для соли Na_2CO_3 в реакции равен:	2
	$Na_2CO_3 + 2HC1 \Leftrightarrow 2NaC1 + CO_2 + H_2O$	
	1) 1 2) 1/2 3) 1/3 4) 2,0.	
003	Фактор эквивалентности для кислоты в реакции	4
	2 КОН + $H_2C_2O_4 \iff K_2C_2O_4 + 2H_2O$ равен:	
	1) 1/3 2) 1/4 3) 1 4) 1	
004	Фактор эквивалентности для кислоты в реакции:	3
	2 КОН + H_3 PO ₄ \iff K_2 HPO ₄ + $2H_2$ О равен	
	1) 1/4 2) 1/3 3) 1/2 4) 1	
005	Чему равен фактор эквивалентности для кислоты в реакции:	4
	$H_3PO_4 + KOH \Leftrightarrow KH_2PO_4 + H_2O$	
006	1) 1/2 2) 1/3 3) 1/4 4) 1 Чему равен фактор эквивалентности для соли Al ₂ (SO ₄) ₃ в	1
000	чему равен фактор эквивалентности для соли Al ₂ (SO ₄) ₃ в реакции:	1
	$Al_2(SO_4)_3 + 4KOH \Leftrightarrow [Al(OH)_2]_2SO_4 + 2K_2SO_4$	
	1) 1/4 2) 1/2 3) 1/3 4) 1	
007	Чему равен фактор эквивалентности для соли CuSO ₄ в реакции:	1
	$CuSO_4 + 4KOH \iff K_2[Cu(OH)_4] + K_2SO_4$	
	1) 1/4 2) 1/2 3) 1/3 4) 1	
008	Чему равен фактор эквивалентности для соли AgNO ₃ в реакции:	2
	$AgNO_3 + 2NH_3 \Leftrightarrow [Ag(NH_3)_2]NO_3$	
000	1) 1/4 2) 1/2 3) 1/3 4) 1	1
009	Чему равен фактор эквивалентности для соли ZnSO ₄ в реакции:	1
	$ZnSO_4 + 4KOH \Leftrightarrow K_2[Zn(OH)_4] + K_2SO_4$	
010	1) 1/4 2) 1/2 3) 1/3 4) 1 Чему равен фактор эквивалентности для щелочи в реакции:	1
010		1
	$3KOH + H_3PO_4 \iff K_3PO_4 + 3H_2O$ 1) 1/4 2) 1/3 3) 1/2 4) 1	
	1) 1/1 2) 1/3 3) 1/2 4) 1	

Тема 3. Растворы. Закон эквивалентов.

№	Задание	Ответ
OC 001	На нейтрализацию 30 мл раствора серной кислоты израсходовано 20 мл раствора КОН с молярной концентрацией эквивалента, равной 0,15 моль/л. $C(1/z H_2SO_4)$ в растворе составляет: 1) 0,15 моль/л 2) 0,1 моль/л 3) 0,2 моль/л 4) 1,0 моль/л.	2
002	На нейтрализацию 20 мл раствора серной кислоты израсходовано 15 мл раствора NaOH с молярной концентрацией эквивалента, равной 0,2 моль/л. С(1/Z H ₂ SO ₄) в растворе составляет: 1) 0,15 моль/л 2) 0,1 моль/л 3) 0,2 моль/л 4) 1,5 моль/л	1
003	На нейтрализацию 15 мл раствора фосфорной кислоты израсходовано 20 мл раствор КОН с молярной концентрацией эквивалента, равной 0,3 моль/л. С(1/Z H ₃ PO ₄) в растворе составляет: 1) 0,2 моль/л 2) 0,15 моль/л 3) 0,3 моль/л 4) 0,4 моль/л	4
004	На реакцию с 25 мл раствора калия карбоната с молярной концентрацией эквивалента, равной 0,2 моль/л израсходовано 50 мл раствора соляной кислоты. С(1/Z HCl) в растворе составляет: 1) 0,2 моль/л 2) 0,1 моль/л 3) 0,3 моль/л 4) 0,5 моль/л.	2
005	На нейтрализацию 10 мл раствора щавелевой кислоты пошло 20 мл раствора $Ba(OH)_2$ с молярной концентрацией эквивалента, равной 0,4 моль/л. Рассчитайте $C(1/Z H_2C_2O_4)$ в растворе. 1) 0.8 моль/л 2) 0.4 моль/л 3) 0.5 моль/л 4) 0.6 моль/л.	1
006	На нейтрализацию 20 мл раствора уксусной кислоты пошло 10 мл раствора NaOH с молярной концентрацией эквивалента, равной 0,8 моль/л. Рассчитайте C(1/Z CH ₃ COOH) в растворе. 1) 0,1 моль/л 2) 0,2 моль/л 3) 0,8 моль/л	4
007	На нейтрализацию 20 мл раствора фосфорной кислоты пошло 10 мл раствора NaOH с молярной концентрацией эквивалента, равной 0,1 моль/л. Рассчитайте С (1/Z H ₃ PO ₄) в растворе. 1) 0,1 моль/л 2) 0,2 моль/л 3) 0,08 моль/л 4) 0,05 моль/л	4
008	На нейтрализацию 130 мл раствора серной кислоты пошло 65 мл раствора NaOH с молярной концентрацией эквивалента, равной 0,3 моль/л. Рассчитайте C(1/Z H ₂ SO ₄) в растворе. 1) 0,10 моль/л 2) 0,075 моль/л 3) 0,15 моль/л 4) 0,30 моль/л	3
009	На нейтрализацию 150 мл раствора фосфорной кислоты пошло 50 мл раствора NaOH с молярной концентрацией эквивалента, равной 0,3 моль/л. Рассчитайте С(1/Z H ₃ PO ₄) в растворе. 1) 0,10 моль/л 2) 0,075 моль/л 3) 0,15 моль/л 4) 0,30 моль/л	1
010	На нейтрализацию 50 мл раствора хлорной кислоты пошло 50 мл раствора КОН с молярной концентрацией эквивалента, равной 0,3 моль/л. Рассчитайте С(1/Z HClO ₄) в растворе. 1) 0,10 моль/л 2) 0,075 моль/л 3) 0,15 моль/л 4) 0,30 моль/л	4

Тема 4. Элементы химической термодинамики. Энергетика химических реакций. Часть 1.

№	Задание	Ответ
OC	H-v/5	4
001	Наибольшее количество энергии выделяется при протекании реакции	4
	$1) CS_2 = C + 2S$ $\Delta H = -88 \text{ кДж/моль}$	
	$2) CO = C + 0.5 O_2$ $\Delta H = +111 \text{ кДж/моль}$	
	$3) CO_2 = C + O_2$ $\Delta H = +394 \text{ кДж/моль}$	
	4) $HCN = 0.5 H_2 + C + 0.5 N_2$ ΔH =-105 κ Дж/моль	
002	Наибольшее количество энергии поглощается при протекании	4
	реакции:	
	1) $HI = 0.5 H_2 + 0.5 I_2$ $\Delta H = -26 $ кДж	
	2) $CS_2 = C + 2 S$ $\Delta H = -88 \text{ кДж}$	
	3) $HBr = 0.5 H_2 + 0.5 Br_2$ $\Delta H = +36 кДж$	
	4) $CO_2 = C + O_2$ $\Delta H = +394 \text{ кДж}$	
003	Наибольшее количество энергии ВЫДЕЛЯЕТСЯ в реакции	4
	образования:	
	1) $N_2 + 2H_2 = N_2H_4$ $\Delta H^0 = +50 \text{ кДж/моль}$	
	2) $0.5N_2 + 1.5H_2 = NH_3\Delta H^0 = -46 \text{ кДж/моль}$	
	$\Delta H^0 = -188 \text{ кДж/моль}$	
004	$\Delta H^0 = -286 \text{ кДж/моль}$	2
004	Наибольшим поглощением энергии сопровождается реакция:	2
	1) $0.5 \text{ N}_2 + 1.5 \text{ H}_2 = \text{NH}_3$ $\Delta H = -46 \text{кДж/моль}$	
	2) $N_2 + 2 H_2 = N_2 H_4$ $\Delta H = +50 \text{ кДж/моль}$	
	3) $0.5 \text{ N}_2 + \text{O}_2 = \text{NO}_2$ $\Delta H = +34 \text{ кДж/моль}$	
005	4) $N_2 + 2 O_2 = N_2 O_4$ $\Delta H = +10 \text{ кДж/моль}$ Наибольшее количество теплоты поглощается в реакции:	4
003	1) $HI = 0.5 H_2 + 0.5 I_2$ $\Delta H = -26 \text{ кДж}$	4
	$(2) \text{ CS}_2 = \text{C} + 2\text{S}$ $\Delta \text{H} = -38 \text{ кДж}$	
	3) HBr = 0.5 H2 + 0.5 Br2	
	4) $CO_2 = C + O_2$ $\Delta H = +394 \text{ кДж}$	
006	ВЫДЕЛЕНИЕ наибольшего количества теплоты происходит в	4
	реакции:	
	$\Delta H = +52 \text{ кДж}$	
	2) $H_2 + Br_2 = 2HBr$ $\Delta H = -72 \text{ кДж}$	
	3) $H_2 + Cl_2 = 2HCl$ $\Delta H = -184 кДж$	
	4) $H_2 + F_2 = 2HF$ $\Delta H = -538 \text{ кДж}$	
007	Наибольшее количество энергии поглощается при протекании	3
	реакции	
	1) $CS_2 = C + 2 S$ $\Delta H = -88 \text{ кДж/моль}$	
	2) CO = C + 0,5 O ₂ $\Delta H = +111 \text{ кДж/моль}$	
	3) $CO_2 = C + O_2$ $\Delta H = +394 \text{ кДж/моль}$	
000	4) HCN = 0,5 H ₂ + C+0,5N ₂	2
008	Наибольшее количество теплоты выделяется в реакции	3
	образования 1) $C + 2S = CS_2$	
	$(2) C + 0.5 O_2 = CO$ $\Delta H = -111 \text{ кДж/моль}$	
	$2) C + 0,3 C_2 = CO$ $\Delta H = -394 \text{ кДж/моль}$	
	$4) 0.5 H_2 + C + 0.5 N_2 = HCN$ $\Delta H = + 105 к Дж/моль$	
	T) 0,5 112 T C T 0,5 112 T 11C11 T 105 T	l

009	Наибольшее количество энергии ПОГЛОЩАЕТСЯ в реакции	1
	образования:	
	1) $N_2 + 2H_2 = N_2H_4$ $\Delta H^0 = +50 \text{ кДж/моль}$	
	2) $0.5N_2 + 1.5H_2 = NH_3$ $\Delta H^0 = -46 \text{ кДж/моль}$	
	3) $O_2 + H_2 = H_2O_2$ $\Delta H^0 = -188 \text{ кДж/моль}$	
	4) $0.5O_2 + H_2 = H_2O$ $\Delta H^0 = -286 \text{ кДж/моль}$	
010	При образовании 1 моль какого вещества поглощается	4
	наименьшее количество энергии?	
	1) 0,5 N_2 + 1,5 H_2 = NH_3 ΔH = - $46\kappa Дж/моль$	
	2) $N_2 + 2 H_2 = N_2 H_4$ $\Delta H = +50 \text{ кДж/моль}$	
	3) $0.5 \text{ N}_2 + \text{O}_2 = \text{NO}_2$ $\Delta H = +34 \text{ кДж/моль}$	
	4) $N_2 + 2 O_2 = N_2 O_4$ $\Delta H = +10 \ кДж/моль$	

Тема 5. Элементы химической термодинамики. Энергетика химических реакций. Часть 2.

<u>№</u>	Задание	Ответ
OC 001	Самопроизвольному протеканию реакции способствует	1
001	следующее изменение энтропии:	-
	1) увеличение 2) уменьшение 3) энтропия не влияет на	
	протекание реакции	
	4) для ответа на поставленный вопрос необходимы	
	дополнительные данные	
002	Самопроизвольному протеканию реакции способствует	2
	следующее изменение энтальпии:	
	1) увеличение 2) уменьшение	
	3) энтальпия не влияет на протекание реакции	
	4) для ответа на поставленный вопрос необходимы	
003	дополнительные данные Критерием возможности самопроизвольного протекания	2
003	процесса является следующее изменение энергии Гиббса:	2
	1) увеличение 2) уменьшение	
	3) энергия Гиббса не влияет на протекание реакции	
	4) для ответа на поставленный вопрос необходимы	
	дополнительные данные	
004	При растворении твердых веществ в воде энтропия:	1
	1) увеличивается 2) не изменяется 3) уменьшается	
	4) для ответа на поставленный вопрос необходимы	
00.7	дополнительные данные	
005	В каком направлении может пойти реакция: $CO_{(ras)} + H_2O \Leftrightarrow$	3
	${ m CO}_{2({ m ra}_3)} + { m H}_{2({ m ra}_3)},$ если $\Delta { m G}^{ m o}_{ m peakiliu} = 0$?	
	1) вправо 2) влево 3) система находится в состоянии	
	химического равновесия	
	4) для ответа на поставленный вопрос, необходимы	
	дополнительные условия.	
006	Реакция самопроизвольно протекать не может при условии:	2
	1) $\Delta G^{\circ} < 0$ 2) $\Delta G^{\circ} > 0$ 3) $\Delta H^{\circ} < 0$ 4) $\Delta H^{\circ} < 0$; $\Delta S^{\circ} > 0$	
007	Для какого из перечисленных веществ стандартная теплота	1
	образования принимается равной 0?	
	1) $Br_{2 (жидк.)}$ 2) $Br_{2 (ra3)}$ 3) $Br_{2 (тв.)}$ 4) HBr	

008	Для какого из перечисленных веществ стандартная теплота	3
	образования принимается равной 0?	
	1) $H_2O_{(x)}$ 2) (O) 3) $N_{2 (ra3)}$ 4) $I_{2 (ra3)}$	
009	Условием самопроизвольного протекания обратной реакции	2
	является:	
	1) $\Delta G^{\circ} < 0$ 2) $\Delta G^{\circ} > 0$ 3) $\Delta G^{\circ} = 0$	
	4) для характеристики самопроизвольного протекания реакции	
	не достаточно значения ΔG^0	
010	Критерием химического равновесия является:	2
	1) $\Delta G^{\circ} > 0$, 2) $\Delta G^{\circ} = 0$ 3) $\Delta G^{\circ} < 0$ 4) $\Delta H^{\circ} = 0$	

Тема 6. Окислительно-восстановительные реакции. Термодинамика ОВР.

ВЫБЕРИТЕ ОДИН ПРАВИЛЬНЫЙ ОТВЕТ

No	Задание	Ответ
OC		
001	При стандартных состояниях веществ реакция	2
	$3I_2^0 + 2NO + 4H_2O = 6I^- + 2NO_3^- + 8H^+$	
	протекает:	
	1) вправо 2) влево 3) система находится в равновесии	
002	При стандартных состояниях веществ реакция:	2
	$2Mn^{2+} + 5Br_2 + 8H_2O = 2MnO_4^- + 10Br^- + 16H^+$ протекает:	
	1) вправо 2) влево 3) система находится в равновесии	
003	При стандартных состояниях веществ реакция:	2
	$Cr_2O_7^{2-} + 6SO_4^{2-} + 14H^+ = 2Cr^{3+} + 3S_2O_8^{2-} + 7H_2O$ протекает:	
	1) вправо 2) влево 3) система находится в равновесии	
004	При стандартных состояниях веществ реакция:	1
	$4KI + O_2 + 2H_2SO_4 = 2I_2^0 + 2H_2O + 2K_2SO_4$ протекает	
	1) вправо 2) влево 3) система находится в равновесии	
005	При стандартных состояниях веществ реакция	2
	$Cr_2O_7^{2-} + 6Cl^- + 14H^+ = 2Cr^{3+} + 3Cl_2^0 + 7H_2O$ протекает:	
	1) вправо 2) влево 3) система находится в равновесии	
006	При стандартных состояниях веществ реакция	2
	$2Cr^{3+} + 3S_2O_8^{2-} + 7 H_2O \leftrightarrow Cr_2O_7^{2-} + 6SO_4^{2-} + 14H^+$ протекает:	
	1) вправо 2) влево 3) система находится в равновесии	
007	При стандартных состояниях веществ реакция	2
	$C1^{-} + 3SO_4^{2^{-}} = C1O_3^{-} + 3SO_3^{2^{-}}$ протекает:	
	1) вправо 2) влево 3) система находится в равновесии	
008	При стандартных состояниях веществ реакция	1
	$2Fe^{3+} + 2I^- \leftrightarrow 2Fe^{2+} + I_2^0$ протекает:	
	1) вправо 2) влево 3) система находится в равновесии	
009	При стандартных состояниях веществ реакция	2
	$2Fe^{3+} + 2Br^{-} \leftrightarrow 2Fe^{2+} + Br_2^0$ протекает:	
	1) вправо 2) влево 3) система находится в равновесии	
010	При стандартных состояниях веществ реакция	1
	$Cr_2O_7^{2-} + 6I^- + 14H^+ = 2Cr^{3+} + 3I_2^0 + 7H_2O$ протекает	
	1) вправо 2) влево 3) система находится в равновесии	

Тема 7. Термодинамика химического равновесия.

Тестовые задания с выбором одного или нескольких правильных ответов

ВЫБЕРИТЕ ОДИН ПРАВИЛЬНЫЙ ОТВЕТ

№ OC	Задание	Ответ
001	Если константа равновесия при 298 К равна 1, то $\Delta G^{\rm o}$ имеет следующее значение:	3
	1) $\Delta G^{\circ} > 0$ 2) $\Delta G^{\circ} < 0$ 3) $\Delta G^{\circ} = 0$ 4) $\Delta G^{\circ} = 1$	
002	Если $\Delta G^0 = 0$, то константа равновесия при 298 К: 1) K=0 2) K > 1 3) K < 1 4) K = 1	4
003	Константа равновесия для реакции $2A_{ras}+B_{ras}=2C_{ras}+ Д_{ras}$ выражается уравнением:	2
	$_{1)}K = \frac{[C][A]}{[A][B]}$ $_{2)}K = \frac{[C]^{2}[A]}{[A]^{2}[B]}$ $_{3)}K = \frac{[2C][A]}{[2A][B]}$	
	$_{4)} K = \frac{[2C]^2[\mathcal{A}]}{[2A]^2[B]}$	
004	Если $\Delta G^0 < 0$, константа равновесия реакции при T = 298 K, имеет значение:	2
	1) $K_p=02$) $K_p > 1$ 3) $K_p < 1$ 4) $K_p = 1$	
005	Какое значение имеет ΔG^0 , если при 298 К константа равновесия К < 1?	1
	1) $\Delta G^0 > 0$ 2) $\Delta G^0 < 0$ 3) $\Delta G^0 = 0$ 4) $\Delta G^0 = 1$	
006	Если при 298 K константа равновесия K > 1 ΔG^0 имеет значение:	2
	1) $\Delta G^0 > 0$ 2) $\Delta G^0 < 0$ 3) $\Delta G^0 = 0$ 4) $\Delta G^0 = 1$	
007	Какое значение имеет константа равновесия реакции при 298°K,	2
	если $\Delta G^0 > 0$? 1) K=0 2) K < 1 3) K > 1 4) K =1	
008	Закон действующих масс для равновесия $C_{(\text{тв.})} + CO_{2(\text{газ})} \Leftrightarrow 2CO_{(\text{газ})}$ имеет вид:	2
	$_{1)}K = \frac{[C][CO_2]}{[CO]^2} _{2)}K = \frac{[CO]^2}{[CO_2]} _{3)}K = \frac{[CO_2]}{[CO]^2}$	
	$_{4)} K = \frac{[CO]}{[CO_2]}$	
009	Какое значение имеет ΔG , если при 298 К $K_c > \Pi_c$?	2
	1) $\Delta G > 0$ 2) $\Delta G < 0$ 3) $\Delta G^0 = 0$ 4) $\Delta G = 1$	
010	Закон действующих масс для равновесия	3
	$Fe(OH)_{2(TB.)} \iff Fe^{2+}_{(p-p)} + 2(OH^{-})_{(p-p)}$ имеет вид:	
	1) $K_C = \frac{[Fe^{2+}][OH^-]}{1}$ 2) $K_C = \frac{1}{[Fe^{2+}][OH^-]}$	
	3) $K_C = [Fe^{2+}][OH^-]^2$ 4) $K_C = \frac{1}{[Fe^{2+}][OH^-]^2}$	

Тема 8. Химическое равновесие.

Тестовые задания с выбором одного или нескольких правильных ответов

No OC	Задание	Ответ
001	Если в систему $HB_4O_7^- \Leftrightarrow H^+ + B_4O_7^{2-}$, ввести некоторое количество натрия тетрабората $Na_2B_4O_7$ равновесие сместится: 1) вправо 2) влево 3) равновесие не сместится	2
002	При повышении общего давления равновесие 2NH ₃ ⇔ N ₂ + 3H ₂ сместится: 1) влево 2) вправо 3) равновесие не сместится, 4) для ответа на вопрос необходимо указать тепловой эффект реакции	1
003	При добавлении к системе CH ₃ COOH ⇔ CH ₃ COO ⁻ + H ⁺ некоторого количества натрия ацетата (CH ₃ COONa) равновесие сместится: 1) вправо 2) влево 3) равновесие не сместится	2
004	При повышении давления равновесие 2SO ₂ + O ₂ ⇔ 2SO ₃ сместится: 1) влево 2) вправо 3) равновесие не сместится, 4) для ответа на вопрос необходимо указать тепловой эффект реакции	2
005	В каком направлении сместится равновесие $HNO_2 \Leftrightarrow H^+ + NO_2^-$, если в систему ввести некоторое количество KNO_2 ? 1) влево 2) вправо 3) равновесие не сместится	1
006	В каком направлении сместится равновесие $N_2 + 3H_2 \Leftrightarrow 2NH_3$; $\Delta H^0 = -92.2$ кДж/моль при повышении температуры? 1) влево 2) вправо 3) равновесие не сместится 4) для ответа необходимо знать, как изменяется давление в системе	1
007	В каком направлении сместится равновесие $H_2AsO_4^- \Leftrightarrow H^+ + HAsO_4^{2-}$, если в систему ввести некоторое количество KH_2AsO_4 ? 1) влево 2) вправо 3) равновесие не сместится	2
008	В каком направлении сместится равновесие при повышении давления в системе:	2
009	Если в систему $HS^- \Leftrightarrow H^+ + S^{2-}$ ввести некоторое количество натрия гидроксида равновесие сместится: 1) вправо 2) влево 3) равновесие не сместится	1
010	Если в систему H_2AsO_4 \Leftrightarrow $H^+ + HAsO_4$ ввести некоторое количество сильной кислоты равновесие сместится: 1) влево 2) вправо 3) равновесие не сместится	1

Тема 9. Осмотические свойства растворов.

No॒	Задание	Ответ
OC		
001	Максимальное осмотическое давление имеет раствор:	3
	1) 0,2 моль/л раствор сахара	
	2) 0,02 моль/л раствор сахара	
	3) 0,2 моль/л раствор ZnCl ₂	

	4) 0,02 моль/л раствор ZnCl ₂	
002	Первый раствор является гипертоническим по отношению ко второму: 1) 1 моль/л раствор глюкозы и 1 моль/л раствор KNO ₃ , 2) 1 моль/л раствор мочевины и 0,1 моль/л раствор мочевины, 3) 0,2 моль/л раствор глюкозы и 2 моль/л раствор фруктозы, 4) 0,1 моль/л раствор сахара и 0,1 моль/л раствор NaCl	2
003	Осмотическое давление минимально при одинаковой температуре и концентрации в растворе: 1) Fe ₂ (SO ₄) ₃ 2) ZnCl ₂ 3) K ₂ SO ₄ 4) KNO ₃	4
004	Первый раствор является гипотоническим по отношению ко второму: 1) 1 моль/л раствор глюкозы и 1 моль/л раствор фруктозы 2) 1 моль/л раствор глюкозы и 0,1 моль/л раствор сахара 3) 1 моль/л раствор сахара и 0,5 моль/л раствор мочевины 4) 0,5 моль/л раствор мочевины и 1 моль/л раствор сахара	4
005	Какой из растворов имеет максимальное осмотическое давление? 1) 0,2 моль/л раствор Cu(NO ₃) ₂ 2) 0,5 моль/л раствор NaNO ₃ 3) 0,2 моль/л раствор C ₁₂ H ₂₂ O ₁₁ 4) 0,5 моль/л раствор CuCl ₂	4
006	Укажите в каком из растворов натрия хлорида возможен плазмолиз эритроцитов: 1) 2% – ный раствор 2)0,09%—ный раствор 3) 0,9% – ный раствор 4) 0,6% – ный раствор	1
007	Минимальное осмотическое давление имеет раствор: 1)0,2 моль/л раствор сахара 2) 0,02 моль/л раствор сахара 3) 0,2 моль/л раствор Zn(NO ₃) ₂ 4) 0,02 моль/л раствор NaNO ₃	2
008	Гемолиз эритроцитов возможен в растворе: 1) 0,9% раствор NaCl 2) 3,0% раствор NaCl 3) 0,09% раствор NaCl 4) 1,0% раствор NaCl	3
009	Изотоническими называются растворы: 1) имеющие одинаковое осмотическое давление, 2)имеющие одинаковую молярную концентрацию, 3)содержащие равные мольные доли растворенного вещества, 4)имеющие одинаковую процентную концентрацию.	1
010	В каком из эквимолярных растворов осмотическое давление минимально при одинаковой температуре? 1) $Fe_2(SO_4)_3$ 2) $ZnCl_2$ 3) K_2SO_4 4) KNO_3	4

Тема 10. Протолитическая теория кислот и оснований.

No॒	Задание	Ответ
OC		
001	Из приведенных ниже частиц наиболее СИЛЬНЫМ основанием	2
	является:	
	1) $H_2PO_4^-$ 2) S^{2-} 3) $PO_4^{3-}4$) HCO_3^- 5) CO_3^{2-}	

002	Наиболее слабым основанием является:	1
	1) аммиак NH ₃ 2) метиламин CH ₃ NH ₂	
	3) диметиламин (CH ₃) ₂ NH*	
	$*K_b((CH_3)_2NH) = 6.0\cdot10^{-4}$	
003	Наиболее слабым основанием является частица:	1
	1) H_2PO_4 2) S^{-2} 3) PO_4 ³ 4) CO_3 ²	
004	Наиболее слабой кислотой является:	2
	1) HF 2) HCN 3) HBr 4) HClO	
005	Какая из частиц относится к амфолитам?	3
	1) NO_2^{-2}) CO_3^{2-} 3) HS ⁻ 4) PO_4^{3-}	
006	Наиболее слабой кислотой является частица:	1
	1) HCN 2) HCl 3) HF 4) HOCl	
007	Из приведенных ниже частиц наиболее СЛАБЫМ основанием	4
	является:	
	1) HO ⁻ 2) S ²⁻ 3) NO ₂ ⁻ 4) HCO ₃ ⁻	
008	Наиболее слабым основанием является частица:	1
	1) SO_4^{2-2}) NO_2^{-3}) PO_4^{3-4}) S^{2-}	
009	Наиболее сильным основанием является частица:	3
	1) CH ₃ COO ⁻ 2) NO ₂ ⁻ 3) OCl ⁻ 4) PO ₄ ³ -	
010	К амфолитам относится частица:	2
	1) NO_2^{-2}) HCO_3^{-} 3) S^{2-} 4) PO_4^{3-}	

Тема 11. Гидролиз солей.

ВЫБЕРИТЕ ОДИН ПРАВИЛЬНЫЙ ОТВЕТ

No॒	Задание	Ответ
OC		
001	рН водного раствора ZnCl ₂ :	2
	1) $pH > 7$ 2) $pH < 7$ 3) $pH = 7$	
002	рН водного раствора AlCl ₃ :	2
	1) $pH > 7$ 2) $pH < 7$ 3) $pH = 7$	
003	рН водного раствора FeCl ₃ :	2
	1) $pH > 7$ 2) $pH < 7$ 3) $pH = 7$	
004	рН водного раствора K ₂ SO ₃ :	1
	1) $pH > 7$ 2) $pH < 7$ 3) $pH = 7$	
005	Укажите рН водного раствора Ba(NO ₂) ₂	1
	1) $pH > 7$ 2) $pH < 7$ 3) $pH = 7$	
006	Укажите pH водного раствора KClO	1
	1) $pH > 7$ 2) $pH < 7$ 3) $pH = 7$	
007	Укажите pH водного раствора NaCN	1
	1) $pH > 7$ 2) $pH < 7$ 3) $pH = 7$	
008	Укажите pH водного раствора K ₃ PO ₄	1
	1) $pH > 7$ 2) $pH < 7$ 3) $pH = 7$	
009	Укажите рН водного раствора Cr ₂ (SO ₄) ₃	2
	1) $pH > 7$ 2) $pH < 7$ 3) $pH = 7$	
010	Укажите рН водного раствора Cu(NO ₃) ₂	2
	1) $pH > 7$ 2) $pH < 7$ 3) $pH = 7$	

Тема 12. Расчет рН растворов кислот и оснований.

Тестовые задания с выбором одного или нескольких правильных ответов

ВЫБЕРИТЕ ОДИН ПРАВИЛЬНЫЙ ОТВЕТ

№ OC	Задание	Ответ
001	pH раствора серной кислоты с молярной концентрацией 0,05 моль/л равен:	1
	1) 1,0 2) 2 3) 1,3 4) 2,3	
002	рН раствора хлорной кислоты с молярной концентрацией 0,01 моль/л равен: 1) 2 2) 4 3) 0,01 4) 12	1
003	Концентрация ионов H_3O^+ в растворе с pH = 7: 1) 10^{-7} моль/л 2) 10^{-14} моль/л 3) 7 моль/л 4) 0,7 моль/л	1
004	Концентрация гидроксид-ионов в растворе с pH = 7: 1) 10^{-7} моль/л 2) 10^{-14} моль/л 3) 10^{-1} моль/л 4) 7 моль/л	1
005	рН раствора HI с молярной концентрацией 0,01 моль/л равен: 1) 2 2) 4 3) 0,01 4) 12	1
006	рН раствора натрия гидроксида с молярной концентрацией 0,01 моль/л равен: 1) 2 2) 4 3) 0,01 4) 12	4
007	Концентрация ионов H_3O^+ в растворе с pH = 12: 1) 10^{-2} моль/л 2) 10^{-12} моль/л 3) 12 моль/л 4) $0,12$ моль/л	2
008	Если рОН раствора равен 2, то: 1) $[H_3O^+] = [OH^-]$ 2) $[H_3O^+] > [OH^-]$ 3) $[H_3O^+] < [OH^-]$	3
009	рН раствора бария гидроксида с молярной концентрацией 0,005 моль/л равен: 1) 2 2) 7 3) 10 4) 12	4
010	Концентрация гидроксид-ионов в растворе с pH = 10: 1) $0,1$ моль/л 2) 10^{-4} моль/л 3) 10^{-10} моль/л 4) 10 моль/л	2

Тема 13. Химия координационных соединений. Номенклатура

Тестовые задания с выбором одного или нескольких правильных ответов

No॒	Задание	Ответ
OC		
001	Названию хлоропентамминкобальт(III)хлорид соответствует	1
	формула:	
	1) [Co(NH ₃) ₅ Cl]Cl ₂	
	2) [Co(NH ₃) ₅ Cl ₂]Cl	
	3) $[Co(NH_3)_6](OH)_2$	
002	Координационное число и степень окисления	3
	комплексообразователя в данном комплексном соединении	
	$Na_3[Cr(C_2O_4)_3]$ соответственно равны:	
	1) 6 и +2 2) 3 и +6 3) 6 и +3	
003	Названию калия гексагидроксоантимонат(V) соответствует	3
	формула:	
	1) K[Sb(OH) ₄] 2) [Sb(OH) ₄](OH) 3) K[Sb(OH) ₆]	

004	Названию натрия триоксалатохромат(III) соответствует	2
	формула:	
	1) [Cr(H ₂ O) ₆)]Cl ₃ 2) Na ₃ [Cr(C ₂ O ₄) ₃]	
	3) Na ₃ [Cr(OH) ₆]	
005	Какая из формул соответствует названию	1
	калийгексацианоферрат(III)?	
	1) $K_3[Fe(CN)_6]$ 2) $K_4[Fe(CN)_6]$ 3) $K_3[FeF_6]$	
006	Какая из формул соответствует названию калия	2
	гексацианоферрат(II)?	
	1) $K_3[Fe(CN)_6]$ 2) $K_4[Fe(CN)_6]$ 3) $K[AgCl_2]$	
007	Какая из формул соответствует названию	3
	пентакарбонилжелезо(0)?	
	1) K ₃ [Fe(CN) ₆] 2) Na ₃ [Fe(OH) ₆] 3) Fe(CO) ₅	
008	Названию тетрамминмедь(II) сульфат соответствует формула:	1
	1) $[Cu(NH_3)_4]SO_4$ 2) $[Cu(NH_3)_4](NO_3)_2$	
	3) K ₂ [Cu(OH) ₄]	
009	Названию монобромотриамминдиаквокобальта(III) бромид	2
	соответствует формула:	
	1) $[Co(H_2O)_2(NH_3)]Br_3$ 2) $[Co(H_2O)_2(NH_3)_3Br]Br_2$ 3)	
	$Co(H_2O)_2(NH_3)Br]Br$	
010	Названию тетрабромодиамминплатина(IV) соответствует	1
	формула:	
	1) $[Pt(NH_3)_2Br_4]^0$ 2) $[Pt(NH_3)_6]Br_4$	
	$3) \left[Pt(NH_3)_2Br_2 \right] Br_2$	

Тема 14. Химия координационных соединений. Строение, образование и разрушение комплексных соединений.

Задание	Ответ
Осадок Сu(OH)2 можно растворить действием реактива:	1
1) NH ₃ (раствор) 2) H ₂ O 3) C ₂ H ₅ OH	
	3
, 4 1/	
	3
, 4 1,	
	2
	2
1) 2 и +4 2) 4 и +2 3) 2 и +2	
Укажите координационное число и степень окисления	1
комплексообразователя в данном комплексном соединении	
$0 = \begin{pmatrix} cH_2 & h_2 & cH_2 \\ cU^2 & cH_2 \end{pmatrix} $	
1) 4 и +2 2) 4 и +4 3) 2 и +4	
Укажите координационное число и степень окисления	3
комплексообразователя в данном комплексном соединении	
	Осадок Cu(OH) ₂ можно растворить действием реактива: 1) NH ₃ (раствор) 2) H ₂ O 3) C ₂ H ₅ OH Комплекс [Ag(NH ₃) ₂]Cl можно разрушить действием реактива: 1) NH ₃ (раствор) 2) KCl(раствор) 3) Na ₂ S(раствор) Осадок PbCl ₂ можно растворить действием реактива: 1) KCl(раствор) 2) H ₂ O 3) KOH (избыток) Действием какого реактива можно растворить осадок AgI? 1) NaCl(раствор) 2) Na ₂ S ₂ O ₃ (раствор) 3) HNO ₃ (раствор) Укажите координационное число и степень окисления комплексообразователя в данном комплексном соединении Na ₂ [Be(CO ₃) ₂] 1) 2 и +4 2) 4 и +2 3) 2 и +2 Укажите координационное число и степень окисления комплексообразователя в данном комплексном соединении

	[Co(NH ₃) ₄ CO ₃]Cl				
	1) 5 и +2 2)	6 и +2	3) 6 и +3		
008	Укажите координационн	ое число и с	тепень окислен	R И	2
	комплексообразователя в	данном ком	иплексном соед	инении Cs ₂	
	[Ir C2O4 Cl4]				
	1) 5 и +4 2)	6 и +4	3) 6 и +3		
009	Укажите координационное число и степень окисления			4	
	комплексообразователя в данном комплексном соединении				
	$[Fe(CO)_5]$				
	1) 5 и +2 2)	2 и +5	3) 5 и +3	4) 5 и 0	
010	Укажите координационн	ое число и с	тепень окислен	R И	3
	комплексообразователя в данном комплексном соединении				
	$[Cu(NH_2-NH_2)_2]^{2+}$				
	1) 2 и +2	2 и +4	3) 4 и +2	4) +4 и 2	

Тема 15. Химия s-элементов Периодической системы элементов Д.И. Менделеева. Часть 1
 Тестовые задания с выбором одного или нескольких правильных ответов
 ВЫБЕРИТЕ ОДИН ПРАВИЛЬНЫЙ ОТВЕТ

№	Задание	Ответ
OC		
001	Наибольшую энергию гидратации имеет ион:	2
	1) K^+ 2) Li^+ 3) Rb^+ 4) Na^+	
002	Электронная формула [Kr] 5s ² 4d ¹⁰ 5p ⁶ соответствует иону:	1
	1) Ba ²⁺ 2) Sr ²⁺ 3) Ra ²⁺	
003	Наиболее слабые основные свойства проявляет оксид:	3
	1) MgO2) BaO 3) BeO	
004	Какой из металлов группы IA имеет наименьшую энергию	3
	ионизации?	
	1) Li 2) Na 3) Cs 4) Be	
005	Какой из перечисленных металлов группы ІА наименее	1
	химически активен?	
	1) Na 2) Cs 3) K	
006	Какой ион имеет наименьшую энергию гидратации?	2
	1) Rb^+ 2) Cs^+ 3) Na^+ 4) K^+	
007	Какой ион образует наиболее прочные связи с ионом фтора?	4
	1) Rb^{+} 2) K^{+} 3) Na^{+} 4) Li^{+}	
008	Реакция среды в водном растворе соли Be(II) сульфата:	1
	1) кислая 2) щелочная 3) нейтральная	
009	Какой из элементов при реакции с кислородом образует	2
	пероксид?	
	1) Li 2) Na 3) K 4) Be	
010	Какой из элементов при реакции с кислородом образует оксид?	1
	1) Li 2) Na 3) K 4) Ba	

Тема 16. Химия s-элементов Периодической системы элементов Д.И. Менделеева. Часть 2. Тестовые задания с выбором одного или нескольких правильных ответов

No OC	Задание		
001	В реакции барий нитрата с калий хроматом участвуют ионы: 1) Ba ²⁺ , NO ₃ ⁻ 2) K ⁺ ,CrO ₄ ²⁻ 3) Ba ²⁺ , CrO ₄ ²⁻		
002	Наиболее выраженными основными свойствами обладает гидроксид: 1) Be(OH) ₂ 2) Mg(OH) ₂ 3) Ca(OH) ₂ 4) Ba(OH) ₂	4	
003	Ионы Ca ²⁺ из раствора кальций хлорида наиболее полно можно осадить реактивом: 1) Na ₂ SO ₄ 2) (NH ₄) ₂ C ₂ O ₄ 3) KF	2	
004	Какая из солей дает кислую реакцию (pH < 7) в водном растворе? 1) нитрат берилия 2) нитрат калия 3) сульфат натрия 4) карбонат калия	1	
005	Какие ионы не участвуют в реакции взаимодействия кальция хлорида с аммония оксалатом? 1) Ca ²⁺ , Cl ⁻ 2) NH ₄ +, Cl ⁻ 3) NH ₄ +, C ₂ O ₄ ²⁻	2	
006	Карбонатная (временная) жесткость воды может быть устранена добавлением гашеной извести. В реакции между кальция гидрокарбонатом и кальция гидроксидом участвуют ионы 1) Ca ²⁺ , H ⁺ , HO ⁻ 2) CO ₃ ²⁻ , HO ⁻ , HCO ₃ ⁻ 3) Ca ²⁺ , HO ⁻ , HCO ₃ ⁻	2	
007	Реакция среды в водном растворе соли Be(II) сульфата: 1) кислая 2) щелочная 3) нейтральная	1	
008	Какая из следующих солей наименее растворима в воде? 1) Na ₂ CO ₃ 2) Li ₂ CO ₃ 3) K ₂ CO ₃	2	
009	Какая из солей в водном растворе подвергается гидролизу в наибольшей степени? 1) Na ₂ SO ₄ 2) BaCl ₂ 3) BeCl ₂ 4) Mg(NO ₃) ₂	3	
010	Какая из солей в водном растворе подвергается гидролизу по катиону? 1) BaSO ₄ 2) BaCl ₂ 3) Be(NO ₃) ₂ 4) Ca(NO ₃) ₂	3	

Тема 17. Химия s- и d-элементов Периодической системы элементов Д.И. Менделеева

No	Задание	Ответ
OC		
001	Наименее растворима в воде следующая соль:	3
	1) SrSO ₄ 2) CaSO ₄ 3) BaSO ₄	
002	Реактивом натрий карбоната наиболее полно можно осадить	2
	ион:	
	1) $Mg^{2+}2) Sr^{2+}$ 3) Ba^{2+}	
003	Электронную формулу [Xe] 4f ¹⁴ 5d ³ имеет ион:	1
	1) W^{3+} 2) Tc^{4+} 3) $Mn^{2+}4$) Mo^{3+}	
004	Какой ион имеет электронную формулу [Kr] 4d ³ ?	2
	1) Cr^{3+} 2) Mo^{+3} 3) Mo^{6+} 4) Fe^{2+}	
005	Какой ион имеет электронную формулу [Ar] 3d ⁴ ?	4
	1) Cr^{3+} 2) Mn^{4+} 3) Mn^{2+} 4) Cr^{2+}	
006	Какой ион имеет электронную формулу [Ar] 3d ⁵ ?	1
	1) Mn^{2+} 2) Mn^{4+} 3) Cr^{3+} 4) Fe^{2+}	

007	Какая из следующих солей наиболее растворима в воде?	2
	1) BaCO ₃ 2) CaSO ₄ 3) CaC ₂ O ₄	
008	Что представляет собой превращение	2
	$Cr^{3+} \rightarrow CrO_4^{2-}$ относительно хрома:	
	•	
	1) восстановление в кислой среде	
	2) окисление в щелочной среде	
	3) диспропорционирование	
	4) без изменения степени окисления	
009	Какая электронная формула соответствует иону Zn ²⁺ ?	4
	1) [Kr] $4d^{10}$ 2) [Ar] $4s^23d^{10}$ 3)[Ar] $4s^23d^8$	
	4) [Ar] 3d ¹⁰	
010	Какая электронная формула соответствует иону Cu ²⁺ ?	3
	1) [Ar] 3d ⁹ 2) [Kr] 4d ⁹ 3)[Ar] 3d ¹⁰ 4) [Ar] 4s ¹ 3d ⁷	

Тема 18. Химия d-элементов Периодической системы элементов Д.И. Менделеева. Часть 1.

No	Задание	Ответ
OC		
001	Электронную формулу [Ar] 3d ⁴ имеет ион:	1
	1) Cr^{2+} 2) Cr^{3+} 3) Fe^{2+} 4) Mn^{2+}	
002	Превращение $MnO_2 \rightarrow Mn^{2+}$ относительно марганца	2
	представляет собой:	
	1) окисление в щелочной среде	
	2) восстановление в кислой среде	
	3) окисление в кислой среде	
	4) диспропорционирование	
003	Хром в степени окисления +3 в сильно щелочной среде	1
	существует в форме:	
	1) $[Cr(OH)_6]^{3-}$ 2) $[Cr(H_2O)_6]^{3+}$	
	3) $[Cr(OH)_2(H_2O)_4]^+$ 4) $[Cr(OH)_3(H_2O)_3]^0$ Что представляет собой превращение $Cr^{3+} \rightarrow Cr_2O_7^{2-}$	
004		2
	относительно хрома?	
	1) восстановление в кислой среде	
	2) окисление в кислой среде	
	3) восстановление в щелочной среде	
	4) окисление в щелочной среде	
005	Что представляет собой превращение	2
	$[\operatorname{Cr}(\operatorname{OH})_6]^{3-} \to [\operatorname{Cr}(\operatorname{H}_2\operatorname{O})_6]^{3+}$	
	относительно хрома?	
	1) окисление в кислой среде	
	2) без изменения СО в кислой среде	
	3) без изменения СО в щелочной среде	
	4) восстановление в кислой среде	
006	В какой форме существует хром в степени окисления +3 в	3
	щелочной среде?	
	1) $[Cr(OH)(H_2O)_5]^{2+}$ 2) $[Cr(H_2O)_6]^{3+}$	
	1) $[Cr(OH)(H_2O)_5]^{2+}$ 2) $[Cr(H_2O)_6]^{3+}$ 3) $[Cr(OH)_3(H_2O)_3]^0$ 4) $[Cr(OH)_2(H_2O)_4]^+$	
007	Какой ион имеет электронную формулу [Ar] 3d ³ ?	2
	1) Te^{4+} 2) Cr^{3+} 3) Mn^{2+} 4) Mn^{3+}	
008	Каким реактивом следует действовать на раствор сулемы для	1

	получения ртуть(II) амидохлорида?	
	1) аммиаком	
	2) аммиаком в смеси с водородпероксидом	
	3) аммоний хлоридом	
	4) смесью аммиака с аммоний хлоридом	
009	Что представляет собой превращение	2
	$Mn(OH)_2 \rightarrow MnO_4$ относительно марганца?	
	1) восстановление в кислой среде	
	2) окисление в кислой среде	
	3) восстановление в щелочной среде	
	4) окисление в щелочной среде	
010	Какое вещество образуется при добавлении карбоната калия к	2
	водному раствору хрома(III) сульфата?	
	1) гидроксид калия 2) гидроксид хрома(III)	
	3) хромат калия 4) карбонат хрома	

Тема 19. Химия d-элементов Периодической системы элементов Д.И. Менделеева. Часть 2.

No	Задание	Ответ
OC		
001	Превращение MnO ₂ \rightarrow K ₂ MnO ₄ относительно марганца	1
	представляет собой:	
	1) окисление в щелочной среде	
	2) восстановление в щелочной среде	
	3) окисление в кислой среде	
	4) диспропорционирование	_
002	рН водного раствора хром(III) хлорида имеет значение:	3
	1) $pH = 7$ 2) $pH > 7$ 3) $pH < 7$	
003	Для растворения серебра иодида следует использовать:	2
	1) H ₂ O 2) Na ₂ S ₂ O ₃ 3) KCl 4) NH ₃ ·H ₂ O	
004	Какое соединение серебра получится после добавления азотной	4
	кислоты к раствору диамминсеребро хлорида?	
	1) $AgNO_3$ 2) $H[Ag(NO_3)_2]$ 3) $NH_4[Ag(NO_3)_2]$	
	4) AgCl	
005	Укажите рН водного раствора марганец(II)нитрата.	3
	1) pH=7 2) pH > 7 3) pH < 7	
006	Золото можно растворить в:	3
	1) смеси HCl и CH ₃ COOH 2) KOH	
	3) смеси азотной (концентрированной) и соляной кислот	
	4) аммиаке	
007	Y II (WY)	4
007	Укажите рН водного раствора хром(III) хлорида.	1
0.00	1) pH < 7 2) pH > 7 3) pH=7 Что представляет собой превращение $Au^0 \rightarrow [Au(CN)_2]^-$	
008	Что представляет собой превращение $Au^0 \rightarrow [Au(CN)_2]^-$	4
	относительно золота?	
	1) окисление в кислой среде	
	2) восстановление в нейтральной среде	
	3) восстановление в щелочной среде	
000	4) окисление в присутствии растворимых цианидов	
009	Какое вещество образуется при подщелачивании водного	3
	раствора калия дихромата?	

	1) гидроксид калия 2) гидроксид хрома(III) 3) хромат	
	калия	
010	Каким реактивом следует действовать на раствор сулемы для	4
	получения аммиачного комплекса ртути(II)?	
	1) аммиаком	
	2) аммиаком в смеси с водородпероксидом	
	3) аммоний хлоридом	
	4) смесью аммиака с аммоний хлоридом	

Тема 20. Химия d-элементов Периодической системы элементов Д.И. Менделеева. Часть 3.

No	Задание	Ответ
OC		
001	В результате реакции КОН с раствором AgNO ₃ образуется:	2
	1) AgOH 2) Ag ₂ O 3) AgO 4) K[Ag(OH) ₂]	
002	При взаимодействии избытка раствора аммиака с раствором	2
	цинка нитрата образуется:	
	1) $Zn(OH)_2$ 2) $[Zn(NH_3)_4](NO_3)_2$	
	3) ZnO 4) $Zn(OH)NO_3$	
003	Чтобы осуществить превращение $K_2FeO_4 \rightarrow Fe(OH)_3$ следует	1
	взять реактивы:	
	1) Cl ₂ и KOH 2) Cl ₂ и H ₂ O 3) KI и KOH	
	4) H ₂ O ₂ и H ₂ SO ₄	
004	Гидролиз магния борида протекает с образованием:	4
007	1) BH_3 2) $B(OH)_3$ 3) BO_3^{3-} 4) B_2H_6	
005	Каким реактивом не удается перевести в раствор серебро (I)	4
	оксид?	
	1) аммиаком 2) калий цианидом 3) азотной кислотой 4) соляной кислотой	
006	3) азотной кислотой 4) соляной кислотой	1
006	Что представляет собой превращение $Hg_2Cl_2 \rightarrow HgCl_2$	1
	относительно Hg? 1) окисление	
	2) без изменения степени окисления	
	3) диспропорционирование	
	4) восстановление	
007	Ртуть(II) нитрат при действии избытка калий иодида перейдет в:	4
007	1) ртуть(I) иодид 2) ртуть(II) иодид	'
	3) ртуть 4) калий тетраиодомеркурат(II)	
008	Какое вещество является самым слабым окислителем?	4
	1) GaCl ₃ 2) InCl ₃ 3) TlCl ₃ 4) AlCl ₃	
009	Какое вещество окажется одним из продуктов реакции между	2
	раствором цинка сульфата и аммиака в избытке?	
	1) цинка гидроксид	
	2) тетрамминцинка(II) сульфат	
	3) аммония тетрагидроксоцинкат(II)	
	4) тетрааминцинка(II) гидроксид	
010	Кремний растворяется в концентрированных щелочах с	4
	образованием:	
	1) силана 2) кремния ортосиликата	
	3) кремниевых кислот 4) кремния метасиликата	

Тема 21. Химия d- и p-элементов Периодической системы элементов Д.И. Менделеева.

ВЫБЕРИТЕ ОДИН ПРАВИЛЬНЫЙ ОТВЕТ

№ OC	Задание	Ответ
001	Превращение $Hg \to Hg_2(NO_3)_2$ относительно Hg представляет собой:	1
	1) окисление азотной кислотой при избытке ртути	
	2) восстановление в присутствии нитрат-иона	
	3) окисление ртути избытком азотной кислоты	
	4) комплексообразование	
002	Гидролиз буры происходит с образованием:	2
002	1) HB_4O_7 2) $B(OH)_3$ 3) $(BO_3)_3$ 4) $(BO_3)_4$	1
003	Борная кислота является:	1
	1) одноосновной	
	2) двухосновной	
004	3) трехосновной В ионе В(ОН) ₄ - имеет место:	3
004	1) sp – гибридизация 2) sp ² – гибридизация	3
	1) sp — гиоридизация 2) sp — гиоридизация 3) sp ³ — гибридизация	
	4) образование трехцентровой связи	
005	Что представляет собой превращение $Hg_2^{2+} \rightarrow Hg^0 + Hg^{2+}$	3
000	относительно Нд?	
	1) окисление	
	2) без изменения степени окисления	
	3) диспропорционирование	
	4) восстановление	
006	Гидролиз лития аланата (тетрагидридоалюмината) протекает с	1
	образованием:	
	1) H_2 2) AlH_33) $(Al_2H)_n$ 4) Al_2H_6	
007	В основе фармакопейной реакции анализа препаратов бора	1
	лежит качественная реакция борной кислоты:	
	1) со спиртами 2) с сильными кислотами	
000	3) с основаниями 4) с кислородом	
008	Гидролиз галогенидов бора приводит к образованию	4
	1) тетраборат-иона 2) буры	
000	3) безводного натрия 4) ортоборной кислоты	2
009	Действием какого реактива можно разрушить комплекс [Ag(NH ₃) ₂]Cl?	2
	[Ag(NH ₃) ₂]С1? 1) KNO ₃ (раствор) 2) Na ₂ S(раствор)	
	3) KCl(раствор) 2) Na ₂ S(раствор)	
010	У какого из оксида более всего выражены кислотные свойства?	2
310	1) GeO ₂ 2) SiO ₂ 3) SnO ₂ 4) PbO ₂	-

Тема 22. Химия р-элементов III-V групп Периодической системы элементов Д.И. Менделеева. Часть 1

Тестовые задания с выбором одного или нескольких правильных ответов

№	Задание	Ответ
OC		

001	Ионизация борной кислоты происходит с образованием иона: 1) $H_2BO_3^-$ 2) $(BO_3)_3^{3-}$ 3) $B_4O_7^{2-}$ 4) $B(OH)_4^-$	4
	3) $B_4O_7^{2-}$ 4) $B(OH)_4^{-}$	
002	При растворении в соляной кислоте силицида магния	1
	образуется:	
	1) SiH_4 2) H_2 3) $Mg(OH)_2$ 4) SiO_2	
003	Карбид алюминия гидролизуется с образованием:	3
	1) ацетилена 2) этилена 3) метана	
	4) углекислого газа	
004	При растворении СО ₂ в водном растворе существуют:	4
	1) только молекулы H ₂ CO ₃	
	3) СО ₂ (водный)	
	4) все частицы, перечисленные в а) б) в)	
005	В какой молекуле имеются трехцентровые связи между бором и	1
	водородом?	
	1) B_2H_62) HBF_4 3) $B(CH)_3$ 4) $K[BH_4]$	
006	При гидролизе силанов образуется:	1
	1) водород 2) кремний 3) кремниевые кислоты	
	4) силоксаны	
007	В каком веществе степень окисления углерода численно не	4
	совпадает с его валентностью?	
	1) CO ₂ 2) углерод(IV) хлорид	
	3) СН ₄ 4) формальдегид	
800	Кремний растворяется в азотной кислоте в присутствии HF с	4
	образованием:	
	1) силана 2) кремния тетрафторида	
	3) кремниевых кислот	
	4) кремнефтористоводородной кислоты	
009	Тип гибридизации углерода в карбине:	1
	1) sp 2) sp ² 3) sp ³ 4) sp ³ d ²	
010	Какие реагенты не реагируют друг с другом?	4
	1) $Bi(OH)_3 + HCl$	
	2) H3SbO3 + HCl	
	3) $H_3AsO_3 + HCl$	
	4) H3PO3 + HCl	

Тема 23. Химия р-элементов III-V групп Периодической системы элементов Д.И. Менделеева. Часть 2

No	Задание	Ответ
OC		
001	В карбине углерод имеет тот же тип гибридизации, что и в	1
	молекуле одного из соединений:	
	1) HSCN 2) H ₂ CO ₃ 3) CH ₄ 4) C ₂ H ₄	
002	Наименьшую термодинамическую устойчивость имеет гидрид:	2
	1) SiH ₄ 2) PbH ₄ 3) GeH ₄ 4) SnH ₄	
003	Самый слабый восстановитель:	3
	1) GaCl2) InCl 3) TlCl 4) AlCl	
004	Укажите какая соль хлорид олова(II) или хлорид олова(IV)	2
	гидролизуется в большей степени.	
	1) хлорид олова(II) 2) хлорид олова(IV)	
	3) степень гидролиза одинакова	

	4) соли не подвергаются гидролизу	
005	Комплексные цианиды тяжелых металлов $[M(CN)_4]^{2-}$ образуются при действии на осадок $M(CN)_2$: 1) цианидов щелочных металлов 2) азотной кислоты	1
	3) аммиака	
	4) тиоцианат-иона	
006	В результате какой из реакций получается арсин?	4
	1) $As_2O_3 + NaOH = 2) As_2O_3 + HC1 =$	
	3) $As_2O_3 + KClO_3 = 4)As_2O_3 + Zn + H_2SO_4 =$	
007	Какое из веществ наименее термодинамически устойчиво?	1
	1) PbCl ₄ 2) SnCl ₄ 3) SiCl ₄ 4) GeCl ₄	
008	Укажите наиболее устойчивый гидрид:	2
	1) SnH ₄ 2) SiH ₄ 3) GeH ₄ 4) PbH ₄	
009	Карбид кальция гидролизуется с образованием:	1
	1) ацетилена 2) этилена 3)метана	
	4) углекислого газа	
010	С каким веществом реагирует разбавленная Н ₃ РО ₄ ?	4
	1) NaI 2) KMnO ₄ 3) NH ₄ Cl 4) AgNO ₃	

Тема 24. Химия р-элементов III-V групп Периодической системы элементов Д.И. Менделеева. Часть 3.

No॒	Задание	Ответ
OC		
001	Вещество, наименее устойчивое к нагреванию:	2
	1) SiCl ₄ 2) PbCl ₄ 3) SnCl ₄ 4) CO ₂	
002	Для получения N ₂ O используют:	2
	1) NH ₄ NO ₂	
	2) NH ₄ NO ₃	
	3) NH ₄ Cl	
	4) (NH ₄) ₂ S	
003	Наиболее термодинамически устойчивое вещество:	1
	1) алюминий(III) оксид	
	2) галлий(III) оксид	
	3) индий(III) оксид	
	4) таллий(III) оксид	
004	Что образуется при взаимодействии PCl ₅ с избытком воды при	3
	нагревании?	
	1) реакция не идет	
	2) POCl ₃	
	$3) H_3PO_4$	
	4) HPO ₃ - ²	
005	Какое вещество наиболее устойчиво к действию	4
	восстановителей?	
	1) PbO ₂ 2) GeO ₂ 3) SnO ₂ 4) SiO ₂	
006	Какой из ионов является наиболее сильным окислителем?	4
	1) PO_4^{3-2}) AsO_3^{3-} 3) AsO_4^{3-} 4) SbO_4^{3-}	
007	С каким веществом оксид сурьмы(V) не реагирует?	4
	1) CaO 2) HCl 3) NaOH 4) O ₂	

008	Одинаковы ли значения рН растворов солей калия карбоната и	2
	калия гидрокарбоната с одинаковыми концентрациями?	
	1) рН растворов двух солей одинаковы	
	2) раствор карбоната калия более щелочной	
	3) раствор карбоната калия более кислый	
009	Укажите наиболее слабый окислитель:	1
	1) Al_2O_3 2) Ga_2O_3 3) In_2O_3 4) Tl_2O_3	
010	В результате какой из приведенных реакций можно получить	1
	NaBiO ₃ ?	
	1)Bi(OH) ₃ + Cl ₂ + NaOH = 2) BiCl ₃ +Cl ₂ +H ₂ SO ₄ =	
	3) $Bi + NaOH =$ 4) $Bi + HNO_3 =$	

Тема 25. Химия р-элементов IV-VI групп Периодической системы элементов Д.И. Менделеева.

ВЫБЕРИТЕ ОДИН ПРАВИЛЬНЫЙ ОТВЕТ

№ OC	Задание	Ответ
001	Кремний тетрафторид гидролизуется с образованием: 1) силана 2) элементного кремния 3) фтора 4) кремнефтористоводородной кислоты	4
002	Окислительно-восстановительной двойственностью свойств в водном растворе обладает: 1) NH_3 2) KNO_2 3) KNO_3 4) $KBiO_3$	2
003	Максимальная валентность фосфора:	3
	1) 3 2) 5 3) 6 4) 4 В результате какой реакции может быть получен металлический	
004	висмут?	2
	1) $BiCl_3 + Cl_2 + NaOH =$ 2) $BiCl_3 + Fe + HCl =$	
	3) $Bi(OH)_3 + HC1 = 4)Bi(OH)_3 + NaOH =$	
005	Какая из частиц обладает наиболее сильными донорными свойствами (донор электронной пары)?	1
	1) NH ₃ 2) PH ₃ 3) AsH ₃ 4) SbH ₃	
006	Какое из приведенных соединений проявляет наиболее кислые свойства?	2
	1) Bi(OH) ₃ 2) H ₃ AsO ₄ 3) H ₃ AsO ₃ 4) H ₃ SbO ₃	
007	Какой из приведенных ионов является самым сильным окислителем? 1) $PO_4^{3-}2$) AsO_4^{3-} 3) SbO_4^{3-} 4) BiO_3^{-}	4
008	Какое вещество характеризуется наибольшей окислительной активностью?	4
	1) P ₂ O ₅ 2) As ₂ O ₅ 3) Sb ₂ O ₅ 4) Bi ₂ O ₅	
009	Какова наиболее устойчивая степень окисления висмута?	3
	1) -3 2) 0 3) +3 4) +5	
010	Какая степень окисления наиболее характерна для селена и теллура?	4
	1) + 4 2) +6 3) -2 4) 0	

Тема 26. Химия р-элементов V-VI групп Периодической системы элементов Д.И. Менделеева. Часть 1.

Тестовые задания с выбором одного или нескольких правильных ответов

ВЫБЕРИТЕ ОДИН ПРАВИЛЬНЫЙ ОТВЕТ

№ OC	Задание	Ответ
001	Соединения типа 9_2O_5 и 9_2S_5 неизвестны для элемента:	4
	1) P 2) As 3) Sb 4) Bi	
002	Кислоту состава НЭО ₂ образует:	1
	1) азот 2) фосфор 3) сурьма 4) висмут	
003	При взаимодействии As с HNO ₃ (конц.) при нагревании	3
	образуется:	
	1) $As(NO_3)_3$ 2) H_3AsO_3 3) H_3AsO_4 4) $As(NO_3)_5$	
004	Какая частица может быть акцептором электронной пары?	2
227	1) NH ₄ +2) BF ₃ 3) BF ₄ 4) NH ₃	
005	Какое вещество образуется при гидролизе сурьма(III) хлорида?	1
006	1) SbOCl 2) Sb ₂ O ₃ 3) Sb(OH) ₃ 4) Sb(OH)Cl ₂	2
006	Как изменяется ОЭО в ряду: О, S, Se, Te, Po?	2
	1) увеличивается 2) уменьшается 3) не изменяется	
007		2
007	Как изменяются восстановительные свойства в ряду: SO_2 , SeO_2 , TeO_2 , PoO_2 ?	
	1) увеличиваются	
	2) уменьшаются	
	3) не изменяются	
008	Как изменяются окислительные свойства в ряду: SO ₃ , SeO ₃ ,	1
	TeO₃?	
	1) увеличиваются	
	2) уменьшаются	
	3) не изменяют	
009	Какой из оксидов обладает наибольшей кислотностью?	1
	1) P_2O_5 2) P_2O_3 3) As_2O_3 4) Sb_2O_5	
010	Какую роль в окислительно-восстановительных реакциях могут	2
	играть дисульфиды?	
	1) окислители и восстановители	
	2) только восстановители	
	3) только окислители	
	4) участие в ОВР не характерно	

Тема 27. Химия р-элементов V-VI групп Периодической системы элементов Д.И. Менделеева. Часть 2.

Тестовые задания с выбором одного или нескольких правильных ответов

№	Задание	Ответ
OC		
001	С выделением свободного хлора реагируют вещества:	4
	1) $Na_3PO_4 + HC1 =$ 2) $Na_3AsO_4 + HC1 =$	
	3) $Na_3SbO_4 + HCl =$ 4) $NaBiO_3 + HCl =$	
002	SbH ₃ можно получить в результате реакции:	4
	1) $Sb + H_2 =$ 2) $Sb_2O_3 + H_2 =$	
	3) $Sb_2O_3 + HCl = 4) Sb_2O_3 + HCl + Zn =$	
003	Связь с NH ₃ по донорно-акцепторному механизму образует	3
	молекула:	

	1) PH ₃ 2) CO ₂ 3) BF ₃ 4) N ₂ H ₄	
004	Как изменяется степень гидролиза солей в ряду: KBrO ₄ , KBrO ₃ , KBrO ₂ , KBrO? 1) увеличивается	1
005	2) уменьшается 3) не изменяется	1
005	Какое из приведенных соединений является самым сильным	1
	восстановителем?	
00.5	1) H ₃ PO ₃ 2) H ₃ AsO ₃ 3) Sb(OH) ₃ 4) Bi(OH) ₃	
006	До чего окисляется H ₂ S концентрированной азотной кислотой	3
	при нагревании?	
	1) S 2) SO_2 3) H_2SO_4	
007	При растворении серебра бромида в тиосульфате натрия	1
	образуется:	
	1) дитиосульфатоаргентат(I)	
	2) тиосульфат серебра	
	3) свободное серебро и SO ₂	
008	Что образуется при растворении углерода в концентрированной	1
	серной кислоте?	
	1) SO_2 2) H_2S 3) S	
009	В результате какой реакции можно получить K[Sb(OH) ₆]?	2
	1) $HSbO_2 + KOH =$ 2) $HSbO_2 + KOH + Cl_2 =$	
	3) $Sb + KOH =$ 4) $SbCl_3 + KOH =$	
010	Какой ион гидролизуется в водном растворе соли (NH ₄) ₂ S?	3
	1) NH ₄ ⁺ 2) S ²⁻ 3) оба иона 4) ни один	

Тема 28. Химия р-элементов V-VII групп Периодической системы элементов Д.И. Менделеева.

№	Задание	Ответ
OC		
001	Дифтор окисляет серу до степени окисления:	1
	1) + 6 $2) + 4$ $3) + 2$	
002	Энергия сродства к электрону в ряду: O, S, Se, Te:	2
	1) увеличивается	
	2) уменьшается	
	3) не изменяется	
003	Энергия сродства к электрону в ряду F_2 , Cl_2 , Br_2 , I_2 :	2
	1) увеличивается	
	2) уменьшается 3)не изменяется	
004	Как изменяется сила кислот в ряду: H_2S , H_2Se , H_2Te ?	1
	1) увеличивается	
	2) уменьшается	
	3) не изменяется	
005	Какое из следующих соединений подвергается гидролизу в	2
	наименьшей степени (при одинаковых концентрациях и	
	температуре)?	
	1) Na ₂ Se 2) Na ₂ Te 3) K ₂ S 4) Na ₂ S	
006	Какой реактив можно взять для осуществления процесса: Mn ²⁺	3
	\rightarrow MnO ₄ -?	
	1) SO_3^{2-2}) SO_4^{2-3}) $S_2O_8^{2-}$ 4) $S_2O_3^{2-}$	
007	Что образуется при взаимодействии концентрированной H ₂ SO ₄ с	1
	Cu?	

	1) SO_2 2) S 3) H_2S 4) H_2	
008	В каком из соединений нет связи между атомами серы?	3
	1) $H_2S_2O_3$ 2) H_2S_2 3) $H_2S_2O_8$ 4) $H_2S_2O_6$	
009	Какое вещество образуется при гидролизе висмута(III) хлорида?	1
	1) BiOCl 2) Bi ₂ O ₃ 3) Bi(OH) ₃ 4) Bi(OH)Cl ₂	
010	Как меняется сила кислот в ряду: $HClO_1$, $HClO_2$, $HClO_3$, $HClO_4$?	1
	1) увеличивается	
	2) уменьшается	
	3) не изменяется	

Тема 29. Химия р-элементов VI-VII групп Периодической системы элементов Д.И. Менделеева. Часть 1.

$N_{\underline{0}}$	Задание	Ответ
OC		
001	Восстановительная активность в ряду: S ²⁻ , Se ²⁻ ,Te ²⁻ :	2
	1) уменьшается	
	2) увеличивается	
	3) не изменяется	
002	При окислении S ₂ O ₃ ²⁻ иона хлором образуется:	2
	1) $S_4O_6^{2-}$ 2) $SO_4^{2-}3) SO_3^{2-}$	
003	Сила кислот в ряду H ₂ S, H ₂ Se, H ₂ Te:	1
	1) увеличивается	
	2) уменьшается	
	3) не изменяется	
004	Что образуется при добавлении к раствору тиосульфата натрия	4
	нескольких капель соляной кислоты?	
	1) $S_4O_6^{2-}$ 2) $SO_3^{2-}3) SO_4^{2-}4) S$	
005	Что образуется при гидролизе SO ₂ Cl ₂ ?	1
	1) H ₂ SO ₄ 2) H ₂ SO ₃ 3) H ₂ S 4) SO ₂	
006	Как изменяется сила кислот в ряду: HOF, HOCl, HOBr, HOI?	2
	1) увеличивается	
	2) уменьшается	
	3) не изменяется	
007	Как изменяется реакционная способность в ряду: NaF, NaCl,	1
	NaBr, NaI?	
	1) увеличивается	
	2) уменьшается	
000	3) не изменяется	
008	Как изменяется степень гидролиза в ряду: NaClO, NaClO ₂ ,	2
	NaClO ₃ , NaClO ₄ ?	
	1) увеличивается	
	2) уменьшается	
000	3) не изменяется	2
009	Как изменяется энергия сродства к электрону в ряду: S, Se, Te, Po?	2
	1) увеличивается 2) уменьшается	
	3) не изменяется	
010	У не изменяется Что образуется при взаимодействии концентрированной H ₂ SO ₄ с	3
010		3
	Hg?	

1) H ₂ S	
2) S	
3) SO ₂	
4) Нg пассивируется H ₂ SO ₄	

Тема 30. Химия р-элементов VI-VII групп Периодической системы элементов Д.И. Менделеева. Часть 2.

Тестовые задания с выбором одного или нескольких правильных ответов

No	Задание	Ответ
OC		
001	Для осуществления процесса: $S_2O_3^{2-} \rightarrow SO_4^{2-}$ можно взять	1
	реактив:	
	1) Cl ₂ (избыток) 2) Br ₂ (недостаток) 3) I ₂ (раствор)	
002	При растворении хлорной извести в воде образуется:	3
	1) Cl ₂ 2) HCl 3) CaCl ₂	
003	Взаимодействие Br ₂ с КОН относится (указать тип реакции):	1
	1) диспропорционирование 2) окисление	
004	3) щелочной гидролиз	
004	Пероксодисульфат калия в окислительно-восстановительных	1
	реакциях является:	
	1) сильным окислителем	
	2) слабым восстановителем	
005	3) окислителем и восстановителем	1
005	Как изменяются кислотные свойства в ряду: HF, HCl, HBr, HI?	1
	1) увеличиваются	
	2) уменьшаются	
006	3) не изменяются	4
006	Какой реактив можно взять для осуществления процесса: $S_2O_3^{2-} \rightarrow S_4O_6^{2-}$?	4
	\rightarrow S ₄ O ₆ ? 1) F ₂ (Γ a ₃) 2) Cl ₂ (pactBop) 3) Br ₂ (pactBop)	
	2) C12(pac180p) 3) B12(pac180p) 4) I ₂ (pac180p)	
007	Какую роль в окислительно-восстановительных реакциях может	2
007	играть КСІО ₄ ?	2
	1) окислитель в водном растворе	
	2) окислитель в расплаве	
	3) окислитель и в растворе и в расплаве	
008	Какой реактив следует взять для осуществления превращения:	3
	NaBrO ₃ \rightarrow Br ₂	
	1) HBr 2) NaMnO ₄ 3) Na ₂ CrO ₄	
	4) H ₂ O	
009	Что образуется при окислении тиосульфат-иона избытком	3
	брома?	
	1) $S_4O_6^{2-}$ 2) SO_3^{2-} 3) SO_4^{2-}	
010	В каком веществе нет химических связей между атомами серы?	3
	1) натрий дисульфид	
	2) сероуглерод	
	3) натрий дитионит	
	4) натрий тиосульфат	

N_{Π}/Π	Условие задачи	Ответ
1.	Вычислить рН водного раствора муравьиной кислоты с молярной концентрацией 0,01 моль/л.	2,87
2.	Вычислить pH раствора хлорной кислоты с молярной концентрацией 0,01 моль/л.	2
3.	Вычислить pH водного раствора HCN с молярной концентрацией 0,01 моль/л.	5
4.	Вычислить рН водного раствора угольной кислоты с молярной концентрацией 0,01 моль/л.	4,26
5.	Вычислить рН водного раствора сернистой кислоты с молярной концентрацией 0,01 моль/л.	1,96
6.	Вычислить рН водного раствора хлорноватистой кислоты с молярной концентрацией 0,01 моль/л.	4,765
7.	Вычислить рН водного раствора азотистой кислоты с молярной концентрацией 0,01 моль/л.	2,65
8.	Вычислить рН водного раствора уксусной кислоты с молярной концентрацией 0,01 моль/л.	3,37
9.	Вычислить рОН водного раствора аммиака с молярной концентрацией 0,01 моль/л.	3,37
10.	Вычислить pH водного раствора HF с молярной концентрацией 0,01 моль/л.	2,57
11.	Вычислить рН водного раствора карбоната натрия с молярной концентрацией 0,01 моль/л.	11,2
12.	Вычислить рН водного раствора фосфата натрия с молярной концентрацией 0,01 моль/л.	12,1
13.	Вычислить pH водного раствора ацетата натрия с молярной концентрацией 0,01 моль/л.	8,37
14.	Вычислить рН водного раствора формиата натрия с молярной концентрацией 0,01 моль/л.	7,83
15.	Вычислить рН водного раствора сульфата алюминия с молярной концентрацией 0,005 моль/л.	3,43
16.	Вычислить pH водного раствора нитрата цинка с молярной концентрацией 0,01 моль/л.	5,80
17.	Вычислить рН водного раствора сульфата железа(III) с молярной концентрацией 0,005 моль/л.	2,11
18.	Определить энтальпию гидратации натрия карбоната: $Na_2CO_3(\kappa) + 10 H_2O \rightarrow Na_2CO_3(\kappa) \cdot 10 H_2O$, если известны энтальпии	-91,2

	растворения безводной соли $\Delta H_{\text{раств.}}(6/B)$ и кристаллогидрата $\Delta H_{\text{раств.}}(\kappa/\Gamma)$: $\Delta H_{\text{раств.}}(6/B) = -24,6 \ кДж/моль; \Delta H_{\text{раств.}}(\kappa/\Gamma) = +66,6 \ кДж/моль$	кДж/моль
19.	Определить энтальпию гидратации натрия сульфата: $Na_2SO_4(\kappa) + 10H_2O \rightarrow Na_2SO_4(\kappa) \cdot 10H_2O$, если известны энтальпии растворения безводной соли $\Delta H_{\text{раств.}}(6/B)$ и кристаллогидрата $\Delta H_{\text{раств.}}(\kappa/\Gamma)$: $\Delta H_{\text{раств.}}(6/B) = 11,3 \ \kappa \text{Дж/моль}; \Delta H_{\text{раств.}}(\kappa/\Gamma) = -10,5 \ \kappa \text{Дж/моль}$	-21,8
20.	Определить энтальпию реакции: $\text{Li}(\Gamma) + \text{Na}^+(\Gamma) = \text{Li}^+(\Gamma) + \text{Na}(\Gamma)$, зная энергии ионизации: $ \text{Li}(\Gamma) = \text{Li}^+(\Gamma) + \text{e}^- \qquad \Delta H_{\text{oбp.}} = 520 \text{ кДж/моль} $ $ \text{Na}(\Gamma) = \text{Na}^+(\Gamma) + \text{e}^- \qquad \Delta H_{\text{oбp.}} = 496 \text{ кДж/моль} $	24
21.	Определить энтальпию гидратации натрия карбоната (кДж/моль): $Na_2CO_3(\kappa) + 10 \ H_2O \rightarrow Na_2CO_3(\kappa) \cdot \textbf{7} \ H_2O, если известны энтальпии растворения безводной соли \Delta H_{\text{раств.}}(6/B) и кристаллогидрата \Delta H_{\text{раств.}}(\kappa/r): \Delta H_{\text{раств.}}(6/B) = -24,6 \ \text{кДж/моль}; \ \Delta H_{\text{раств.}}(\kappa/r) = + 43,9 \ \text{кДж/моль}$	- 68,8
22.	Стандартные энтальпии растворения стронция(II) хлорида и стронция(II) хлорида гексагидрата составляют - 47,6 и +30,9 кДж/моль соответственно. Рассчитать энтальпию гидратации безводного стронция(II) хлорида, кДж/моль.	- 78,5
23.	Определить энтальпию гидратации магния хлорида $\Delta H_{\text{гидратации}}$ (кДж/моль): MgCl ₂ (к) + 2 H ₂ O(ж) \rightarrow MgCl ₂ ·2 H ₂ O(к), если известны энтальпии растворения безводной соли $\Delta H_{\text{раств.}}$ (б/в) и кристаллогидрата $\Delta H_{\text{раств.}}$ (к/г): $\Delta H_{\text{раств.}}$ (б/в) = -149,9 кДж/моль; $\Delta H_{\text{раств.}}$ (к/г) = -85,4 кДж/моль	- 64,5
24.	Определить энтальпию гидратации магния хлорида $\Delta H_{\text{гидратации}}$: $MgCl_2(\kappa) + 4 H_2O(\kappa) \rightarrow MgCl_2 \cdot 4 H_2O(\kappa)$, если известны энтальпии растворения безводной соли $\Delta H_{\text{раств.}}(6/B)$ и кристаллогидрата $\Delta H_{\text{раств.}}(\kappa/\Gamma)$: $\Delta H_{\text{раств.}}(6/B) = -149,9 \ \kappa Дж/моль; \Delta H_{\text{раств.}}(\kappa/\Gamma) = -41,8 \ \kappa Дж/моль$	-108,1
25.	Определить энтальпию гидратации магния хлорида $\Delta H_{\text{гидратации}}$: $MgCl_2(\kappa) + 6 H_2O(\kappa) \rightarrow MgCl_2 \cdot 6 H_2O(\kappa)$, если известны энтальпии растворения безводной соли $\Delta H_{\text{раств.}}(6/B)$ и кристаллогидрата $\Delta H_{\text{раств.}}(\kappa/\Gamma)$: $\Delta H_{\text{раств.}}(6/B) = -149,9 \ \kappa Дж/моль; \Delta H_{\text{раств.}}(\kappa/\Gamma) = -12,31 \ \kappa Дж/моль$	- 137,59
26.	Рассчитайте энтальпию реакции: $F(r) + Li(r) \rightarrow F^{-}(r) + Li^{+}(r)$, если известны тепловые эффекты процессов: $F(r) + e^{-} \rightarrow F^{-}(r)$, $\Delta H_{\text{сродства}} = 322 \text{ кДж/моль}$	842

	$\text{Li}(\Gamma) o \text{Li}^+(\Gamma) + \text{e}^-, \qquad \Delta H_{\text{ионизации}} = 520 \text{ кДж/моль}$	
27.	Определить энтальпию гидратации меди(II) сульфата:	- 78,2
	$CuSO_4(\kappa) + 5 H_2O \rightarrow CuSO_4 \cdot 5 H_2O$ (к), если известны энтальпии растворения безводной соли $\Delta H_{\text{раств.}}(\delta/B)$ и	
	энтальпии растворения безводной соли $\Delta H_{\text{раств.}}(6/B)$ и кристаллогидрата $\Delta H_{\text{раств.}}(\kappa/\Gamma)$:	
	кристальногидрата $\Delta H_{\text{раств.}}(\kappa r)$. $\Delta H_{\text{раств.}}(\delta/B) = -66.5 \text{ кДж/моль}; \Delta H_{\text{раств.}}(\kappa/\Gamma) = +11.7 \text{ кДж/моль}$	
28.	При взаимодействии 10 мл раствора H_2O_2 с подкисленным серной	1,97
_0.	кислотой раствором КІ выделилось 2,5 г йода. Вычислить молярную	1,57
	концентрацию эквивалента раствора водорода пероксида.	
29.	Какая масса натрия хромата образуется при действии избытка	1,35 г
	водорода пероксида в щелочной среде на 250 мл раствора хрома(III)	
20	сульфата с молярной концентрацией эквивалента 0,1 моль/л?	0.110
30.	Какой объем (л) (н.у.) кислорода выделится при взаимодействии 100 мл раствора H_2O_2 (C1/х $H_2O_2 = 0,1$ моль/ л) и 200 мл подкисленного	0,112 л
	мл раствора H ₂ O ₂ (C1/x H ₂ O ₂ = 0,1 моль/ л) и 200 мл подкисленного раствора KMnO ₄ (C1/x KMnO ₄ = 0,1 моль/ л)?	
31.	На титрование 2,5 мл раствора щавелевой кислоты с С(1/2H ₂ C ₂ O ₄) =	T = 0.29
31.	0,1 моль/л затрачено 27,5 мл раствора КМnO ₄ . Рассчитать титр (г/л)	· ·
	раствора КМпО ₄ (среда кислая).	г/л
32.	Какая масса (г) водорода дихромата образуется при действии избытка	3,27 г
	водорода пероксида в кислой среде на 300 мл раствора хрома(III)	
	сульфата с молярной концентрацией эквивалента 0,3 моль/л?	
33.	Какую массу (г) марганца(II) сульфата надо добавить к 250 мл водного	0,755 г
	раствора калия перманганата с молярной концентрацией эквивалента 0,04 моль/л для полного осаждения марганца(IV) оксида.	
34.	Какой объем (мл) 20% раствора калия перманганата ($\rho = 1.02 \text{ г/мл}$)	6,45 мл
54.	надо добавить к 250 мл раствора хрома(III) хлорида с молярной	0,43 MJI
	концентрацией эквивалента 0,1 моль/л для полного осаждения	
	марганца(IV) оксида.	
35.	Какая масса (г) марганец(II) сульфата образуется при действии	1,21 г
	избытка водорода пероксида в кислой среде на 200 мл раствора калия	
2.5	перманганата (C1/х KMnO ₄ = 0.2 моль/л)?	0.440
36.	Какой объем (л) (н.у.) кислорода выделится при взаимодействии подкисленного раствора калия дихромата с 200 мл водного раствора	0,448 л
	подкисленного раствора калия дихромата с 200 мл водного раствора водорода пероксида (С $1/x$ $H_2O_2=0,2$ моль/л)?	
37.	Определить молярную концентрацию эквивалента (моль/л) раствора	0,133
37.	хрома(III) сульфата, образующегося при добавлении 200 мл водного	
	раствора водорода пероксида (С 1/х = 0,2 моль/л) к 100 мл слегка	моль/л
	подкисленного серной кислотой раствора калия дихромата.	
38.	Навеска технической щавелевой кислоты массой 0,2 г растворена в 20	90%
	мл воды. На реакцию нейтрализации полученного раствора затрачено	
	40 мл раствора КОН с молярной концентрацией эквивалента равной 0,1 моль/л. Реакция протекает согласно уравнению:	
	2КОН + H ₂ C ₂ O ₄ = K ₂ C ₂ O ₄ + 2 H ₂ O.	
	Определить массовую долю (%) щавелевой кислоты в анализируемом	
	образце.	
39.	Навеска технического (недостаточно очищенного, содержащего	98,6%
	примеси) калия карбоната массой 0,21 г растворена в 50 мл воды.	,
	Полученный раствор реагирует с соляной кислотой по уравнению:	
	$K_2CO_3 + 2 HCl = 2 KCl + H_2O + CO_2$	
	При этом на реакцию затрачено 30 мл раствора HCl с молярной концентрацией эквивалента равной 0,1 моль/л. Определить массовую	
	концентрацией эквивалента равной 0,1 моль/л. Определить массовую долю (%) K_2CO_3 в навеске.	
40.	Навеска технического (т.е. недостаточно очищенного, содержащего	9,84 г/л
	примеси) натрия ацетата массой 0,20 г растворена в 20 мл воды. На	7,0 ⁻ T 1/J1
	реакцию полученного раствора по уравнению:	
	$2 \text{ CH}_3\text{COONa} + \text{H}_2\text{SO}_4 = \text{Na}_2\text{SO}_4 + +2\text{CH}_3\text{COOH}$ израсходовано 24 мл	

	раствора серной кислоты с молярной концентрацией эквивалента	
	равной 0,10 моль/л. Определить титр (г/л) исходного раствора натрия	
41.	ацетата.	00.40/
41.	Навеска технического (т.е. недостаточно очищенного, содержащего примеси) натрия ацетата массой 0,20 г растворена в 20 мл воды. На	98,4%
	реакцию полученного раствора по уравнению:	
	реакцию полученного раствора по уравнению. 2 $CH_3COONa + H_2SO_4 = Na_2SO_4 + +2CH_3COOH$ израсходовано 24 мл	
	раствора серной кислоты с молярной концентрацией эквивалента	
	равной 0,10 моль/л. Определить массовую долю (%) натрия ацетата в	
	анализируемой навеске (образце ацетата).	
42.	На нейтрализацию 30 мл раствора серной кислоты израсходовано 20	4.0 -/-
4 2.	мл раствора щелочи с молярной концентрацией эквивалента 0,15	4,9 г/л
	мл раствора щелочи с молярной концентрацией эквивалента 0,13 моль/л. Рассчитать титр раствора (г/л) серной кислоты.	
43.	Навеска технического (т.е. недостаточно очищенного, содержащего	10.7 -/-
43.	примеси) натрия ацетата массой 0,80 г растворена в 40 мл воды. На	19,7 г/л
	реакцию полученного раствора по уравнению:	
	реакцию полученного раствора по уравнению. 2 $CH_3COONa + H_2SO_4 = Na_2SO_4 + 2 CH_3COOH$ израсходовано 48 мл	
	раствора серной кислоты с молярной концентрацией эквивалента	
	равной 0,20 моль/л. Определить титр раствора по натрия ацетату (г/л).	
44.	Навеска технического (т.е. недостаточно очищенного, содержащего	08 40/
'1'1 .	примеси) натрия ацетата массой 0,80 г растворена в 40 мл воды. На	98,4%
	реакцию полученного раствора по уравнению:	
	реакцию полученного раствора по уравнению. 2 $CH_3COONa + H_2SO_4 = Na_2SO_4 + 2 CH_3COOH$ израсходовано 48 мл	
	раствора серной кислоты с молярной концентрацией эквивалента	
	равной 0,20 моль/л. Определить массовую долю (%) натрия ацетата в	
	анализируемой навеске.	
45.	Навеска технической щавелевой кислоты массой 0,4 г растворена в 40	6,75
4 3.	мл воды. На реакцию нейтрализации полученного раствора затрачено	0,73
	60 мл раствора КОН с молярной концентрацией эквивалента равной	
	0,1 моль/л. Реакция протекает согласно уравнению:	
	2 КОН + $H_2C_2O_4$ = $K_2C_2O_4$ + 2 H_2O . Определить титр раствора по	
	щавелевой кислоте (Γ/π).	
46.	Навеска технической щавелевой кислоты массой 0,4 г растворена в 40	67,5
	мл воды. На реакцию нейтрализации полученного раствора затрачено	07,5
	60 мл раствора КОН с молярной концентрацией эквивалента равной	
	0,1 моль/л. Реакция протекает согласно уравнению:	
	2 КОН + $H_2C_2O_4 = K_2C_2O_4 + 2$ H_2O . Определить массовую долю	
	щавелевой кислоты в анализируемой навеске (%).	
47.	На нейтрализацию 40 мл раствора натрия гидроксида пошло 24 мл	0,012 г/мл
•	раствора серной кислоты с молярной концентрацией эквивалента 0,5	0,012 1/19131
	моль/л. Рассчитайте титр (г/мл) натрия гидроксида в растворе.	
48.	Навеска технического (недостаточно очищенного, содержащего	4,0
	примеси) калия карбоната массой 0,42 г растворена в 100 мл воды.	',
	Полученный раствор реагирует с соляной кислотой по уравнению:	
	$K_2CO_3 + 2 HCl = 2 KCl + H_2O + CO_2$	
	При этом на реакцию затрачено 58 мл раствора HCl с молярной	
	концентрацией эквивалента равной 0,1 моль/л. Определить титр	
	раствора K_2CO_3 (г/л).	
49.	Навеска технического (т.е. недостаточно очищенного, содержащего	84%
	примеси) натрия гидрокарбоната массой 0,20 г растворена в 30 мл	3.75
	воды. На реакцию полученного раствора с HCl: затрачено 20 мл	
	раствора соляной кислоты с молярной концентрацией эквивалента	
	0,10 моль/л. Реакция протекает согласно уравнению: NaHCO ₃ + HCl =	
	$NaCl + CO_2 + H_2O$.	
	Определить массовую долю (%) натрия гидрокарбоната в	
	анализируемом образце (навеске).	

•	Навеска технического (т.е. недостаточно очищенного, содержащего примеси) натрия гидрокарбоната массой 0,20 г растворена в 30 мл	5,6 г/л
	воды. На реакцию полученного раствора с НС1: затрачено 20 мл	
	раствора соляной кислоты с молярной концентрацией эквивалента	
	0,10 моль/л. Реакция протекает согласно уравнению: NaHCO ₃ + HCl =	
	$NaCl + CO_2 + H_2O$.	
	Определить титр натрия гидрокарбоната в растворе (г/л).	

Оценочные средства, рекомендованные к использованию при проведении промежуточной аттестации при освоении обучающимися в ПМГМУ им.И.М.Сеченова Минздрава России образовательных программ по химии биогенных элементов

Институт фармации им. А.П. Нелюбина

Кафедра аналитической, физической и коллоидной химии

Профессиональное образование

Высшее образование – специалитет

Программа специалитета

33.05.01 Фармация Квалификация 65 Провизор

Дисциплина Химия биогенных элементов

Рекомендуемый этап использования оценочных средств: промежуточная аттестация.

Вид и тип оценочного средства: тестовые задания этапа промежуточной аттестации

Разработчик Слонская Т.К.

1. Тема 1. Растворы. Способы выражения состава растворов. Тестовые задания с выбором одного или нескольких правильных ответов

№ OC	Задание	Ответ
001	Масса навески натрия гидроксида, необходимая для приготовления 230 мл раствора с концентрацией 0,6 моль/л равна: 1) 5,52 г 2) 55,2 г 3) 0,552 г 4) 552 г	1
002	Масса навески калия гидроксида, необходимая для приготовления 200 мл раствора с концентрацией 0,5 моль/л равна: 1) 2,8 г 2) 5,6 г 3) 0,56 г 4) 0,28 г	2
003	Масса навески натрия хлорида, необходимая для приготовления 130 мл раствора с концентрацией 0,2 моль/л равна: 1) 152 г 2) 0,152 г 3) 1,52 г 4) 15,2 г	3
004	Масса азотной кислоты, содержащаяся в 200 мл раствора с концентрацией 0,1 моль/л равна: 1) 1,26 г 2) 12,6 г 3) 0,126 г 4) 2,52 г	1
005	Рассчитайте массу навески калия сульфата, необходимую для приготовления 100 мл раствора с концентрацией 0,6 моль/л 1) 10,44 г 2) 1,044 г 3) 104,4 г 4) 0,104 г	1
006	Рассчитайте массу навески натрия гидрокарбоната, необходимую для приготовления 130 мл раствора с концентрацией 0,5 моль/л 1) 5,46 г 2) 54,6 г 3) 0,546 г 4) 10,92 г	1
007	Рассчитайте массу навески бария хлорида, необходимую для	1

	приготовления 300 мл раствора с концентрацией 0,8 моль/л	
	1) 49,9 г 2) 0,499 г 3) 4,99 г 4) 24,99 г	
008	Рассчитайте массу навески кальция гидроксида, необходимую	4
	для приготовления 200 мл раствора с концентрацией 0,001	
	моль/л.	
	1) 0,023 г 2) 0,0112 г 3) 0,23 г 4) 0,0148 г	
009	Рассчитайте массу навески железа(II) сульфата, необходимую	1
	для приготовления 500 мл раствора с концентрацией 0,2 моль/л	
	1) 15,2 г 2) 1,52 г 3) 151,8 г 4) 0,152 г	
010	Рассчитайте массу навески серебра нитрата, необходимую для	1
	приготовления 450 мл раствора с концентрацией 0,5 моль/л	
	1) 38,25 г 2) 3,85 г 3) 0,38 г 4) 19,11 г	

Тема 2. Растворы. Эквивалент. Определение фактора эквивалентности.

No	Задание	Ответ
OC 001	Фактор эквивалентности для соли KHSO ₄ в реакции	1
001	•	1
	$KHSO_4 + BaCl_2 \Leftrightarrow BaSO_4 + KCl + HCl$ равен: 1) 1/2 2) 1/3 3) 1,0 4) 2,0.	
002	Фактор эквивалентности для соли Na_2CO_3 в реакции равен:	2
	$Na_2CO_3 + 2HC1 \Leftrightarrow 2NaC1 + CO_2 + H_2O$	
	1) 1 2) 1/2 3) 1/3 4) 2,0.	
003	Фактор эквивалентности для кислоты в реакции	4
	2 КОН + H_2 С $_2$ О $_4 \iff K_2$ С $_2$ О $_4 + 2$ Н $_2$ О равен:	
	1) 1/3 2) 1/4 3) 1 4) 1	
004	Фактор эквивалентности для кислоты в реакции:	3
	2 КОН + H_3 PO ₄ \iff K_2 HPO ₄ + $2H_2$ О равен	
	1) 1/4 2) 1/3 3) 1/2 4) 1	
005	Чему равен фактор эквивалентности для кислоты в реакции:	4
	$H_3PO_4 + KOH \Leftrightarrow KH_2PO_4 + H_2O$	
006	1) 1/2 2) 1/3 3) 1/4 4) 1 Чему равен фактор эквивалентности для соли Al ₂ (SO ₄) ₃ в	1
000	чему равен фактор эквивалентности для соли Al ₂ (SO ₄) ₃ в реакции:	1
	$Al_2(SO_4)_3 + 4KOH \Leftrightarrow [Al(OH)_2]_2SO_4 + 2K_2SO_4$	
	1) 1/4 2) 1/2 3) 1/3 4) 1	
007	Чему равен фактор эквивалентности для соли CuSO ₄ в реакции:	1
	$CuSO_4 + 4KOH \iff K_2[Cu(OH)_4] + K_2SO_4$	
	1) 1/4 2) 1/2 3) 1/3 4) 1	
008	Чему равен фактор эквивалентности для соли AgNO ₃ в реакции:	2
	$AgNO_3 + 2NH_3 \Leftrightarrow [Ag(NH_3)_2]NO_3$	
000	1) 1/4 2) 1/2 3) 1/3 4) 1	1
009	Чему равен фактор эквивалентности для соли ZnSO ₄ в реакции:	1
	$ZnSO_4 + 4KOH \Leftrightarrow K_2[Zn(OH)_4] + K_2SO_4$	
010	1) 1/4 2) 1/2 3) 1/3 4) 1 Чему равен фактор эквивалентности для щелочи в реакции:	1
010		1
	$3KOH + H_3PO_4 \iff K_3PO_4 + 3H_2O$ 1) 1/4 2) 1/3 3) 1/2 4) 1	
	1) 1/1 2) 1/3 3) 1/2 4) 1	

Тема 3. Растворы. Закон эквивалентов.

№	Задание	Ответ
OC 001	На нейтрализацию 30 мл раствора серной кислоты израсходовано 20 мл раствора КОН с молярной концентрацией эквивалента, равной 0,15 моль/л. $C(1/z H_2SO_4)$ в растворе составляет: 1) 0,15 моль/л 2) 0,1 моль/л 3) 0,2 моль/л 4) 1,0 моль/л.	2
002	На нейтрализацию 20 мл раствора серной кислоты израсходовано 15 мл раствора NaOH с молярной концентрацией эквивалента, равной 0,2 моль/л. С(1/Z H ₂ SO ₄) в растворе составляет: 1) 0,15 моль/л 2) 0,1 моль/л 3) 0,2 моль/л 4) 1,5 моль/л	1
003	На нейтрализацию 15 мл раствора фосфорной кислоты израсходовано 20 мл раствор КОН с молярной концентрацией эквивалента, равной 0,3 моль/л. С(1/Z H ₃ PO ₄) в растворе составляет: 1) 0,2 моль/л 2) 0,15 моль/л 3) 0,3 моль/л 4) 0,4 моль/л	4
004	На реакцию с 25 мл раствора калия карбоната с молярной концентрацией эквивалента, равной 0,2 моль/л израсходовано 50 мл раствора соляной кислоты. С(1/Z HCl) в растворе составляет: 1) 0,2 моль/л 2) 0,1 моль/л 3) 0,3 моль/л 4) 0,5 моль/л.	2
005	На нейтрализацию 10 мл раствора щавелевой кислоты пошло 20 мл раствора $Ba(OH)_2$ с молярной концентрацией эквивалента, равной 0,4 моль/л. Рассчитайте $C(1/Z H_2C_2O_4)$ в растворе. 1) 0.8 моль/л 2) 0.4 моль/л 3) 0.5 моль/л 4) 0.6 моль/л.	1
006	На нейтрализацию 20 мл раствора уксусной кислоты пошло 10 мл раствора NaOH с молярной концентрацией эквивалента, равной 0,8 моль/л. Рассчитайте C(1/Z CH ₃ COOH) в растворе. 1) 0,1 моль/л 2) 0,2 моль/л 3) 0,8 моль/л	4
007	На нейтрализацию 20 мл раствора фосфорной кислоты пошло 10 мл раствора NaOH с молярной концентрацией эквивалента, равной 0,1 моль/л. Рассчитайте С (1/Z H ₃ PO ₄) в растворе. 1) 0,1 моль/л 2) 0,2 моль/л 3) 0,08 моль/л 4) 0,05 моль/л	4
008	На нейтрализацию 130 мл раствора серной кислоты пошло 65 мл раствора NaOH с молярной концентрацией эквивалента, равной 0,3 моль/л. Рассчитайте C(1/Z H ₂ SO ₄) в растворе. 1) 0,10 моль/л 2) 0,075 моль/л 3) 0,15 моль/л 4) 0,30 моль/л	3
009	На нейтрализацию 150 мл раствора фосфорной кислоты пошло 50 мл раствора NaOH с молярной концентрацией эквивалента, равной 0,3 моль/л. Рассчитайте С(1/Z H ₃ PO ₄) в растворе. 1) 0,10 моль/л 2) 0,075 моль/л 3) 0,15 моль/л 4) 0,30 моль/л	1
010	На нейтрализацию 50 мл раствора хлорной кислоты пошло 50 мл раствора КОН с молярной концентрацией эквивалента, равной 0,3 моль/л. Рассчитайте С(1/Z HClO ₄) в растворе. 1) 0,10 моль/л 2) 0,075 моль/л 3) 0,15 моль/л 4) 0,30 моль/л	4

Тема 4. Элементы химической термодинамики. Энергетика химических реакций. Часть 1.

№	Задание	Ответ
OC	H-v/5	4
001	Наибольшее количество энергии выделяется при протекании реакции	4
	$1) CS_2 = C + 2S$ $\Delta H = -88 \text{ кДж/моль}$	
	$2) CO = C + 0.5 O_2$ $\Delta H = +111 \text{ кДж/моль}$	
	$3) CO_2 = C + O_2$ $\Delta H = +394 \text{ кДж/моль}$	
	4) $HCN = 0.5 H_2 + C + 0.5 N_2$ $\Delta H = -105 \kappa Дж/моль$	
002	Наибольшее количество энергии поглощается при протекании	4
	реакции:	
	1) $HI = 0.5 H_2 + 0.5 I_2$ $\Delta H = -26 $ кДж	
	2) $CS_2 = C + 2 S$ $\Delta H = -88 \text{ кДж}$	
	3) $HBr = 0.5 H_2 + 0.5 Br_2$ $\Delta H = +36 кДж$	
	4) $CO_2 = C + O_2$ $\Delta H = +394 \text{ кДж}$	
003	Наибольшее количество энергии ВЫДЕЛЯЕТСЯ в реакции	4
	образования:	
	1) $N_2 + 2H_2 = N_2H_4$ $\Delta H^0 = +50$ кДж/моль	
	2) $0.5N_2 + 1.5H_2 = NH_3\Delta H^0 = -46 \text{ кДж/моль}$	
	$\Delta H^0 = -188 \text{ кДж/моль}$	
004	$\Delta H^0 = -286 \text{ кДж/моль}$	2
004	Наибольшим поглощением энергии сопровождается реакция:	2
	1) $0.5 \text{ N}_2 + 1.5 \text{ H}_2 = \text{NH}_3$ $\Delta H = -46 \kappa \text{Дж/моль}$	
	2) $N_2 + 2 H_2 = N_2 H_4$ $\Delta H = +50 \text{ кДж/моль}$	
	3) $0.5 \text{ N}_2 + \text{O}_2 = \text{NO}_2$ $\Delta H = +34 \text{ кДж/моль}$	
005	4) $N_2 + 2 O_2 = N_2 O_4$ $\Delta H = +10 \text{ кДж/моль}$	4
003	Наибольшее количество теплоты поглощается в реакции: 1) $HI = 0.5 H_2 + 0.5 I_2$ $\Delta H = -26 \text{ кДж}$	4
	$(2) CS_2 = C + 2S$ $\Delta H = -38 \text{ кДж}$	
	$(3) \text{ HBr} = 0.5 \text{ H}_2 + 0.5 \text{ Br}_2$ $\Delta H = +36 \text{ кДж}$	
	$4) CO_2 = C + O_2$ $\Delta H = +394 \text{ кДж}$	
006	ВЫДЕЛЕНИЕ наибольшего количества теплоты происходит в	4
000	реакции:	
	1 1) $H_{2} + I_{2} = 2HI$ $\Delta H = +52 \text{ кДж}$	
	2) $H_2 + Br_2 = 2HBr$ $\Delta H = -72 \text{ кДж}$	
	3) $H_2 + Cl_2 = 2HCl$ $\Delta H = -184 кДж$	
	4) $H_2 + F_2 = 2HF$ $\Delta H = -538 \text{ кДж}$	
007	Наибольшее количество энергии поглощается при протекании	3
	реакции	
	1) $CS_2 = C + 2 S$ $\Delta H = -88 \text{ кДж/моль}$	
	2) CO = C + 0,5 O ₂ $\Delta H = +111 \text{ кДж/моль}$	
	3) $CO_2 = C + O_2$ $\Delta H = +394 \text{ кДж/моль}$	
000	4) $HCN = 0.5 H_2 + C + 0.5 N_2$ $\Delta H = -105 \kappa Дж/моль$	
008	Наибольшее количество теплоты выделяется в реакции	3
	образования	
	1) $C + 2S = CS_2$ $\Delta H = +55 \text{ кДж/моль}$	
	2) C + 0,5 O ₂ = CO $\Delta H = -111 \text{ кДж/моль}$	
	$\Delta H = -394 \text{ кДж/моль}$	
	4) $0.5 \text{ H}_2 + \text{C} + 0.5 \text{ N}_2 = \text{HCN}$ $\Delta \text{H} = +\ 105 \text{кДж/моль}$	

009	Наибольшее количество энергии ПОГЛОЩАЕТСЯ в реакции	1
	образования:	
	1) $N_2 + 2H_2 = N_2H_4$ $\Delta H^0 = +50 \text{ кДж/моль}$	
	2) $0.5N_2 + 1.5H_2 = NH_3$ $\Delta H^0 = -46 \text{ кДж/моль}$	
	3) $O_2 + H_2 = H_2O_2$ $\Delta H^0 = -188 \text{ кДж/моль}$	
	4) $0.5O_2 + H_2 = H_2O$ $\Delta H^0 = -286 \text{ кДж/моль}$	
010	При образовании 1 моль какого вещества поглощается	4
	наименьшее количество энергии?	
	1) 0,5 N_2 + 1,5 H_2 = NH_3 ΔH = - $46\kappa Дж/моль$	
	2) $N_2 + 2 H_2 = N_2 H_4$ $\Delta H = +50 \text{ кДж/моль}$	
	3) $0.5 \text{ N}_2 + \text{O}_2 = \text{NO}_2$ $\Delta H = +34 \text{ кДж/моль}$	
	4) $N_2 + 2 O_2 = N_2 O_4$ $\Delta H = +10 \ кДж/моль$	

Тема 5. Элементы химической термодинамики. Энергетика химических реакций. Часть 2.

<u>№</u>	Задание	Ответ
OC 001	Самопроизвольному протеканию реакции способствует	1
001	следующее изменение энтропии:	-
	1) увеличение 2) уменьшение 3) энтропия не влияет на	
	протекание реакции	
	4) для ответа на поставленный вопрос необходимы	
	дополнительные данные	
002	Самопроизвольному протеканию реакции способствует	2
	следующее изменение энтальпии:	
	1) увеличение 2) уменьшение	
	3) энтальпия не влияет на протекание реакции	
	4) для ответа на поставленный вопрос необходимы	
003	дополнительные данные Критерием возможности самопроизвольного протекания	2
003	процесса является следующее изменение энергии Гиббса:	2
	1) увеличение 2) уменьшение	
	3) энергия Гиббса не влияет на протекание реакции	
	4) для ответа на поставленный вопрос необходимы	
	дополнительные данные	
004	При растворении твердых веществ в воде энтропия:	1
	1) увеличивается 2) не изменяется 3) уменьшается	
	4) для ответа на поставленный вопрос необходимы	
00.7	дополнительные данные	
005	В каком направлении может пойти реакция: $CO_{(ras)} + H_2O \Leftrightarrow$	3
	${ m CO}_{2({ m ra}_3)} + { m H}_{2({ m ra}_3)},$ если $\Delta { m G}^{ m o}_{ m peakiliu} = 0$?	
	1) вправо 2) влево 3) система находится в состоянии	
	химического равновесия	
	4) для ответа на поставленный вопрос, необходимы	
	дополнительные условия.	
006	Реакция самопроизвольно протекать не может при условии:	2
	1) $\Delta G^{\circ} < 0$ 2) $\Delta G^{\circ} > 0$ 3) $\Delta H^{\circ} < 0$ 4) $\Delta H^{\circ} < 0$; $\Delta S^{\circ} > 0$	
007	Для какого из перечисленных веществ стандартная теплота	1
	образования принимается равной 0?	
	1) $Br_{2 (жидк.)}$ 2) $Br_{2 (ra3)}$ 3) $Br_{2 (тв.)}$ 4) HBr	

008	Для какого из перечисленных веществ стандартная теплота	3
	образования принимается равной 0?	
	1) $H_2O_{(x)}$ 2) (O) 3) $N_{2 (ra3)}$ 4) $I_{2 (ra3)}$	
009	Условием самопроизвольного протекания обратной реакции	2
	является:	
	1) $\Delta G^{\circ} < 0$ 2) $\Delta G^{\circ} > 0$ 3) $\Delta G^{\circ} = 0$	
	4) для характеристики самопроизвольного протекания реакции	
	не достаточно значения ΔG^0	
010	Критерием химического равновесия является:	2
	1) $\Delta G^{\circ} > 0$, 2) $\Delta G^{\circ} = 0$ 3) $\Delta G^{\circ} < 0$ 4) $\Delta H^{\circ} = 0$	

Тема 6. Окислительно-восстановительные реакции. Термодинамика ОВР.

ВЫБЕРИТЕ ОДИН ПРАВИЛЬНЫЙ ОТВЕТ

No	Задание	Ответ
OC		
001	При стандартных состояниях веществ реакция	2
	$3I_2^0 + 2NO + 4H_2O = 6I^- + 2NO_3^- + 8H^+$	
	протекает:	
	1) вправо 2) влево 3) система находится в равновесии	
002	При стандартных состояниях веществ реакция:	2
	$2Mn^{2+} + 5Br_2 + 8H_2O = 2MnO_4^- + 10Br^- + 16H^+$ протекает:	
	1) вправо 2) влево 3) система находится в равновесии	
003	При стандартных состояниях веществ реакция:	2
	$Cr_2O_7^{2-} + 6SO_4^{2-} + 14H^+ = 2Cr^{3+} + 3S_2O_8^{2-} + 7H_2O$ протекает:	
	1) вправо 2) влево 3) система находится в равновесии	
004	При стандартных состояниях веществ реакция:	1
	$4KI + O_2 + 2H_2SO_4 = 2I_2^0 + 2H_2O + 2K_2SO_4$ протекает	
	1) вправо 2) влево 3) система находится в равновесии	
005	При стандартных состояниях веществ реакция	2
	$Cr_2O_7^{2-} + 6Cl^- + 14H^+ = 2Cr^{3+} + 3Cl_2^0 + 7H_2O$ протекает:	
	1) вправо 2) влево 3) система находится в равновесии	
006	При стандартных состояниях веществ реакция	2
	$2Cr^{3+} + 3S_2O_8^{2-} + 7 H_2O \leftrightarrow Cr_2O_7^{2-} + 6SO_4^{2-} + 14H^+$ протекает:	
	1) вправо 2) влево 3) система находится в равновесии	
007	При стандартных состояниях веществ реакция	2
	$C1^{-} + 3SO_4^{2^{-}} = C1O_3^{-} + 3SO_3^{2^{-}}$ протекает:	
	1) вправо 2) влево 3) система находится в равновесии	
008	При стандартных состояниях веществ реакция	1
	$2Fe^{3+} + 2I^- \leftrightarrow 2Fe^{2+} + I_2^0$ протекает:	
	1) вправо 2) влево 3) система находится в равновесии	
009	При стандартных состояниях веществ реакция	2
	$2Fe^{3+} + 2Br^{-} \leftrightarrow 2Fe^{2+} + Br_2^0$ протекает:	
	1) вправо 2) влево 3) система находится в равновесии	
010	При стандартных состояниях веществ реакция	1
	$Cr_2O_7^{2-} + 6I^- + 14H^+ = 2Cr^{3+} + 3I_2^0 + 7H_2O$ протекает	
	1) вправо 2) влево 3) система находится в равновесии	

Тема 7. Термодинамика химического равновесия.

Тестовые задания с выбором одного или нескольких правильных ответов

№ OC	Задание	Ответ
001	Если константа равновесия при 298 К равна 1, то $\Delta G^{\rm o}$ имеет следующее значение:	3
	1) $\Delta G^{\circ} > 0$ 2) $\Delta G^{\circ} < 0$ 3) $\Delta G^{\circ} = 0$ 4) $\Delta G^{\circ} = 1$	
002	Если $\Delta G^0 = 0$, то константа равновесия при 298 К: 1) K=0 2) K > 1 3) K < 1 4) K = 1	4
003	Константа равновесия для реакции $2A_{ras}+B_{ras}=2C_{ras}+ Д_{ras}$ выражается уравнением:	2
	$_{1)}K = \frac{[C][A]}{[A][B]}$ $_{2)}K = \frac{[C]^{2}[A]}{[A]^{2}[B]}$ $_{3)}K = \frac{[2C][A]}{[2A][B]}$	
	$_{4)} K = \frac{[2C]^2[\mathcal{A}]}{[2A]^2[B]}$	
004	Если $\Delta G^0 < 0$, константа равновесия реакции при T = 298 K, имеет значение:	2
	1) $K_p=02$) $K_p > 1$ 3) $K_p < 1$ 4) $K_p = 1$	
005	Какое значение имеет ΔG^0 , если при 298 К константа равновесия К < 1?	1
	1) $\Delta G^0 > 0$ 2) $\Delta G^0 < 0$ 3) $\Delta G^0 = 0$ 4) $\Delta G^0 = 1$	
006	Если при 298 K константа равновесия K > 1 ΔG^0 имеет значение:	2
	1) $\Delta G^0 > 0$ 2) $\Delta G^0 < 0$ 3) $\Delta G^0 = 0$ 4) $\Delta G^0 = 1$	
007	Какое значение имеет константа равновесия реакции при 298°K,	2
	если $\Delta G^0 > 0$? 1) K=0 2) K < 1 3) K > 1 4) K =1	
008	Закон действующих масс для равновесия $C_{(\text{тв.})} + CO_{2(\text{газ})} \Leftrightarrow 2CO_{(\text{газ})}$ имеет вид:	2
	$_{1)}K = \frac{[C][CO_2]}{[CO]^2} _{2)}K = \frac{[CO]^2}{[CO_2]} _{3)}K = \frac{[CO_2]}{[CO]^2}$	
	$_{4)} K = \frac{[CO]}{[CO_2]}$	
009	Какое значение имеет ΔG , если при 298 К К _с > Π_c ?	2
	1) $\Delta G > 0$ 2) $\Delta G < 0$ 3) $\Delta G^0 = 0$ 4) $\Delta G = 1$	
010	Закон действующих масс для равновесия	3
	$Fe(OH)_{2(TB.)} \iff Fe^{2+}_{(p-p)} + 2(OH^{-})_{(p-p)}$ имеет вид:	
	1) $K_C = \frac{[Fe^{2+}][OH^-]}{1}$ 2) $K_C = \frac{1}{[Fe^{2+}][OH^-]}$	
	3) $K_C = [Fe^{2+}][OH^-]^2$ 4) $K_C = \frac{1}{[Fe^{2+}][OH^-]^2}$	

Тема 8. Химическое равновесие.

Тестовые задания с выбором одного или нескольких правильных ответов

No OC	Задание	Ответ
001	Если в систему $HB_4O_7^- \Leftrightarrow H^+ + B_4O_7^{2-}$, ввести некоторое количество натрия тетрабората $Na_2B_4O_7$ равновесие сместится: 1) вправо 2) влево 3) равновесие не сместится	2
002	При повышении общего давления равновесие 2NH ₃ ⇔ N ₂ + 3H ₂ сместится: 1) влево 2) вправо 3) равновесие не сместится, 4) для ответа на вопрос необходимо указать тепловой эффект реакции	1
003	При добавлении к системе CH ₃ COOH ⇔ CH ₃ COO ⁻ + H ⁺ некоторого количества натрия ацетата (CH ₃ COONa) равновесие сместится: 1) вправо 2) влево 3) равновесие не сместится	2
004	При повышении давления равновесие 2SO ₂ + O ₂ ⇔ 2SO ₃ сместится: 1) влево 2) вправо 3) равновесие не сместится, 4) для ответа на вопрос необходимо указать тепловой эффект реакции	2
005	В каком направлении сместится равновесие $HNO_2 \Leftrightarrow H^+ + NO_2^-$, если в систему ввести некоторое количество KNO_2 ? 1) влево 2) вправо 3) равновесие не сместится	1
006	В каком направлении сместится равновесие $N_2 + 3H_2 \Leftrightarrow 2NH_3$; $\Delta H^0 = -92.2$ кДж/моль при повышении температуры? 1) влево 2) вправо 3) равновесие не сместится 4) для ответа необходимо знать, как изменяется давление в системе	1
007	В каком направлении сместится равновесие $H_2AsO_4^- \Leftrightarrow H^+ + HAsO_4^{2-}$, если в систему ввести некоторое количество KH_2AsO_4 ? 1) влево 2) вправо 3) равновесие не сместится	2
008	В каком направлении сместится равновесие при повышении давления в системе:	2
009	Если в систему $HS^- \Leftrightarrow H^+ + S^{2-}$ ввести некоторое количество натрия гидроксида равновесие сместится: 1) вправо 2) влево 3) равновесие не сместится	1
010	Если в систему H_2AsO_4 \Leftrightarrow $H^+ + HAsO_4$ ввести некоторое количество сильной кислоты равновесие сместится: 1) влево 2) вправо 3) равновесие не сместится	1

Тема 9. Осмотические свойства растворов.

No॒	Задание	Ответ
OC		
001	Максимальное осмотическое давление имеет раствор:	3
	1) 0,2 моль/л раствор сахара	
	2) 0,02 моль/л раствор сахара	
	3) 0,2 моль/л раствор ZnCl ₂	

	4) 0,02 моль/л раствор ZnCl ₂	
002	Первый раствор является гипертоническим по отношению ко второму: 1) 1 моль/л раствор глюкозы и 1 моль/л раствор KNO ₃ , 2) 1 моль/л раствор мочевины и 0,1 моль/л раствор мочевины, 3) 0,2 моль/л раствор глюкозы и 2 моль/л раствор фруктозы, 4) 0,1 моль/л раствор сахара и 0,1 моль/л раствор NaCl	2
003	Осмотическое давление минимально при одинаковой температуре и концентрации в растворе: 1) Fe ₂ (SO ₄) ₃ 2) ZnCl ₂ 3) K ₂ SO ₄ 4) KNO ₃	4
004	Первый раствор является гипотоническим по отношению ко второму: 1) 1 моль/л раствор глюкозы и 1 моль/л раствор фруктозы 2) 1 моль/л раствор глюкозы и 0,1 моль/л раствор сахара 3) 1 моль/л раствор сахара и 0,5 моль/л раствор мочевины 4) 0,5 моль/л раствор мочевины и 1 моль/л раствор сахара	4
005	Какой из растворов имеет максимальное осмотическое давление? 1) 0,2 моль/л раствор Cu(NO ₃) ₂ 2) 0,5 моль/л раствор NaNO ₃ 3) 0,2 моль/л раствор C ₁₂ H ₂₂ O ₁₁ 4) 0,5 моль/л раствор CuCl ₂	4
006	Укажите в каком из растворов натрия хлорида возможен плазмолиз эритроцитов: 1) 2% – ный раствор 2)0,09%—ный раствор 3) 0,9% – ный раствор 4) 0,6% – ный раствор	1
007	Минимальное осмотическое давление имеет раствор: 1)0,2 моль/л раствор сахара 2) 0,02 моль/л раствор сахара 3) 0,2 моль/л раствор Zn(NO ₃) ₂ 4) 0,02 моль/л раствор NaNO ₃	2
008	Гемолиз эритроцитов возможен в растворе: 1) 0,9% раствор NaCl 2) 3,0% раствор NaCl 3) 0,09% раствор NaCl 4) 1,0% раствор NaCl	3
009	Изотоническими называются растворы: 1) имеющие одинаковое осмотическое давление, 2)имеющие одинаковую молярную концентрацию, 3)содержащие равные мольные доли растворенного вещества, 4)имеющие одинаковую процентную концентрацию.	1
010	В каком из эквимолярных растворов осмотическое давление минимально при одинаковой температуре? 1) $Fe_2(SO_4)_3$ 2) $ZnCl_2$ 3) K_2SO_4 4) KNO_3	4

Тема 10. Протолитическая теория кислот и оснований.

No॒	Задание	Ответ
OC		
001	Из приведенных ниже частиц наиболее СИЛЬНЫМ основанием	2
	является:	
	1) $H_2PO_4^-$ 2) S^{2-} 3) $PO_4^{3-}4$) HCO_3^- 5) CO_3^{2-}	

002	Наиболее слабым основанием является:	1
	1) аммиак NH ₃ 2) метиламин CH ₃ NH ₂	
	3) диметиламин (CH ₃) ₂ NH*	
	$*K_b((CH_3)_2NH) = 6.0\cdot10^{-4}$	
003	Наиболее слабым основанием является частица:	1
	1) H_2PO_4 2) S^{-2} 3) PO_4 ³ 4) CO_3 ²	
004	Наиболее слабой кислотой является:	2
	1) HF 2) HCN 3) HBr 4) HClO	
005	Какая из частиц относится к амфолитам?	3
	1) NO_2^{-2}) CO_3^{2-} 3) HS ⁻ 4) PO_4^{3-}	
006	Наиболее слабой кислотой является частица:	1
	1) HCN 2) HCl 3) HF 4) HOCl	
007	Из приведенных ниже частиц наиболее СЛАБЫМ основанием	4
	является:	
	1) HO ⁻ 2) S ²⁻ 3) NO ₂ ⁻ 4) HCO ₃ ⁻	
008	Наиболее слабым основанием является частица:	1
	1) SO_4^{2-2}) NO_2^{-3}) PO_4^{3-4}) S^{2-}	
009	Наиболее сильным основанием является частица:	3
	1) CH ₃ COO ⁻ 2) NO ₂ ⁻ 3) OCl ⁻ 4) PO ₄ ³ -	
010	К амфолитам относится частица:	2
	1) NO_2^{-2}) HCO_3^{-} 3) S^{2-} 4) PO_4^{3-}	

Тема 11. Гидролиз солей.

ВЫБЕРИТЕ ОДИН ПРАВИЛЬНЫЙ ОТВЕТ

No॒	Задание	Ответ
OC		
001	рН водного раствора ZnCl ₂ :	2
	1) $pH > 7$ 2) $pH < 7$ 3) $pH = 7$	
002	рН водного раствора AlCl ₃ :	2
	1) $pH > 7$ 2) $pH < 7$ 3) $pH = 7$	
003	рН водного раствора FeCl ₃ :	2
	1) $pH > 7$ 2) $pH < 7$ 3) $pH = 7$	
004	рН водного раствора K ₂ SO ₃ :	1
	1) $pH > 7$ 2) $pH < 7$ 3) $pH = 7$	
005	Укажите рН водного раствора Ba(NO ₂) ₂	1
	1) $pH > 7$ 2) $pH < 7$ 3) $pH = 7$	
006	Укажите pH водного раствора KClO	1
	1) $pH > 7$ 2) $pH < 7$ 3) $pH = 7$	
007	Укажите pH водного раствора NaCN	1
	1) $pH > 7$ 2) $pH < 7$ 3) $pH = 7$	
008	Укажите pH водного раствора K ₃ PO ₄	1
	1) $pH > 7$ 2) $pH < 7$ 3) $pH = 7$	
009	Укажите рН водного раствора Cr ₂ (SO ₄) ₃	2
	1) $pH > 7$ 2) $pH < 7$ 3) $pH = 7$	
010	Укажите рН водного раствора Cu(NO ₃) ₂	2
	1) $pH > 7$ 2) $pH < 7$ 3) $pH = 7$	

Тема 12. Расчет рН растворов кислот и оснований.

Тестовые задания с выбором одного или нескольких правильных ответов

№ OC	Задание	Ответ
001	pH раствора серной кислоты с молярной концентрацией 0,05 моль/л равен:	1
	1) 1,0 2) 2 3) 1,3 4) 2,3	
002	рН раствора хлорной кислоты с молярной концентрацией 0,01 моль/л равен: 1) 2 2) 4 3) 0,01 4) 12	1
003	Концентрация ионов H_3O^+ в растворе с pH = 7: 1) 10^{-7} моль/л 2) 10^{-14} моль/л 3) 7 моль/л 4) 0,7 моль/л	1
004	Концентрация гидроксид-ионов в растворе с pH = 7: 1) 10^{-7} моль/л 2) 10^{-14} моль/л 3) 10^{-1} моль/л 4) 7 моль/л	1
005	рН раствора HI с молярной концентрацией 0,01 моль/л равен: 1) 2 2) 4 3) 0,01 4) 12	1
006	рН раствора натрия гидроксида с молярной концентрацией 0,01 моль/л равен: 1) 2 2) 4 3) 0,01 4) 12	4
007	Концентрация ионов H_3O^+ в растворе с pH = 12: 1) 10^{-2} моль/л 2) 10^{-12} моль/л 3) 12 моль/л 4) $0,12$ моль/л	2
008	Если рОН раствора равен 2, то: 1) $[H_3O^+] = [OH^-]$ 2) $[H_3O^+] > [OH^-]$ 3) $[H_3O^+] < [OH^-]$	3
009	рН раствора бария гидроксида с молярной концентрацией 0,005 моль/л равен: 1) 2 2) 7 3) 10 4) 12	4
010	Концентрация гидроксид-ионов в растворе с pH = 10: 1) $0,1$ моль/л 2) 10^{-4} моль/л 3) 10^{-10} моль/л 4) 10 моль/л	2

Тема 13. Химия координационных соединений. Номенклатура

Тестовые задания с выбором одного или нескольких правильных ответов

No॒	Задание	Ответ
OC		
001	Названию хлоропентамминкобальт(III)хлорид соответствует	1
	формула:	
	1) [Co(NH ₃) ₅ Cl]Cl ₂	
	2) [Co(NH ₃) ₅ Cl ₂]Cl	
	3) $[Co(NH_3)_6](OH)_2$	
002	Координационное число и степень окисления	3
	комплексообразователя в данном комплексном соединении	
	$Na_3[Cr(C_2O_4)_3]$ соответственно равны:	
	1) 6 и +2 2) 3 и +6 3) 6 и +3	
003	Названию калия гексагидроксоантимонат(V) соответствует	3
	формула:	
	1) K[Sb(OH) ₄] 2) [Sb(OH) ₄](OH) 3) K[Sb(OH) ₆]	

004	Названию натрия триоксалатохромат(III) соответствует	2
	формула:	
	1) [Cr(H ₂ O) ₆)]Cl ₃ 2) Na ₃ [Cr(C ₂ O ₄) ₃]	
	3) Na ₃ [Cr(OH) ₆]	
005	Какая из формул соответствует названию	1
	калийгексацианоферрат(III)?	
	1) $K_3[Fe(CN)_6]$ 2) $K_4[Fe(CN)_6]$ 3) $K_3[FeF_6]$	
006	Какая из формул соответствует названию калия	2
	гексацианоферрат(II)?	
	1) $K_3[Fe(CN)_6]$ 2) $K_4[Fe(CN)_6]$ 3) $K[AgCl_2]$	
007	Какая из формул соответствует названию	3
	пентакарбонилжелезо(0)?	
	1) K ₃ [Fe(CN) ₆] 2) Na ₃ [Fe(OH) ₆] 3) Fe(CO) ₅	
008	Названию тетрамминмедь(II) сульфат соответствует формула:	1
	1) $[Cu(NH_3)_4]SO_4$ 2) $[Cu(NH_3)_4](NO_3)_2$	
	3) K ₂ [Cu(OH) ₄]	
009	Названию монобромотриамминдиаквокобальта(III) бромид	2
	соответствует формула:	
	1) $[Co(H_2O)_2(NH_3)]Br_3$ 2) $[Co(H_2O)_2(NH_3)_3Br]Br_2$ 3)	
	$Co(H_2O)_2(NH_3)Br]Br$	
010	Названию тетрабромодиамминплатина(IV) соответствует	1
	формула:	
	1) $[Pt(NH_3)_2Br_4]^0$ 2) $[Pt(NH_3)_6]Br_4$	
	$3) \left[Pt(NH_3)_2Br_2 \right] Br_2$	

Тема 14. Химия координационных соединений. Строение, образование и разрушение комплексных соединений.

Задание	Ответ
Осадок Сu(OH)2 можно растворить действием реактива:	1
1) NH ₃ (раствор) 2) H ₂ O 3) C ₂ H ₅ OH	
	3
, 4 1/	
	3
, 4 1,	
	2
	2
1) 2 и +4 2) 4 и +2 3) 2 и +2	
Укажите координационное число и степень окисления	1
комплексообразователя в данном комплексном соединении	
$0 = \begin{pmatrix} cH_2 & h_2 & cH_2 \\ cU^2 & cH_2 \end{pmatrix} $	
1) 4 и +2 2) 4 и +4 3) 2 и +4	
Укажите координационное число и степень окисления	3
комплексообразователя в данном комплексном соединении	
	Осадок Cu(OH) ₂ можно растворить действием реактива: 1) NH ₃ (раствор) 2) H ₂ O 3) C ₂ H ₅ OH Комплекс [Ag(NH ₃) ₂]Cl можно разрушить действием реактива: 1) NH ₃ (раствор) 2) KCl(раствор) 3) Na ₂ S(раствор) Осадок PbCl ₂ можно растворить действием реактива: 1) KCl(раствор) 2) H ₂ O 3) KOH (избыток) Действием какого реактива можно растворить осадок AgI? 1) NaCl(раствор) 2) Na ₂ S ₂ O ₃ (раствор) 3) HNO ₃ (раствор) Укажите координационное число и степень окисления комплексообразователя в данном комплексном соединении Na ₂ [Be(CO ₃) ₂] 1) 2 и +4 2) 4 и +2 3) 2 и +2 Укажите координационное число и степень окисления комплексообразователя в данном комплексном соединении

	[Co(NH ₃) ₄ CO ₃]Cl				
	1) 5 и +2 2)	6 и +2	3) 6 и +3		
008	Укажите координационн	ое число и с	тепень окислен	R И	2
	комплексообразователя в	данном ком	иплексном соед	инении Cs ₂	
	[Ir C2O4 Cl4]				
	1) 5 и +4 2)	6 и +4	3) 6 и +3		
009	Укажите координационн	ое число и с	тепень окислен	R NI	4
	комплексообразователя в данном комплексном соединении			инении	
	[Fe(CO) ₅]				
	1) 5 и +2 2)	2 и +5	3) 5 и +3	4) 5 и 0	
010	Укажите координационн	ое число и с	тепень окислен	R И	3
	комплексообразователя в	данном ком	иплексном соед	инении	
	$[Cu(NH_2-NH_2)_2]^{2+}$				
	1) 2 и +2	2 и +4	3) 4 и +2	4) +4 и 2	

Тема 15. Химия s-элементов Периодической системы элементов Д.И. Менделеева. Часть 1
 Тестовые задания с выбором одного или нескольких правильных ответов
 ВЫБЕРИТЕ ОДИН ПРАВИЛЬНЫЙ ОТВЕТ

№	Задание	Ответ
OC		
001	Наибольшую энергию гидратации имеет ион:	2
	1) K^+ 2) Li^+ 3) Rb^+ 4) Na^+	
002	Электронная формула [Kr] 5s ² 4d ¹⁰ 5p ⁶ соответствует иону:	1
	1) Ba ²⁺ 2) Sr ²⁺ 3) Ra ²⁺	
003	Наиболее слабые основные свойства проявляет оксид:	3
	1) MgO2) BaO 3) BeO	
004	Какой из металлов группы IA имеет наименьшую энергию	3
	ионизации?	
	1) Li 2) Na 3) Cs 4) Be	
005	Какой из перечисленных металлов группы ІА наименее	1
	химически активен?	
	1) Na 2) Cs 3) K	
006	Какой ион имеет наименьшую энергию гидратации?	2
	1) Rb^+ 2) Cs^+ 3) Na^+ 4) K^+	
007	Какой ион образует наиболее прочные связи с ионом фтора?	4
	1) Rb^{+} 2) K^{+} 3) Na^{+} 4) Li^{+}	
008	Реакция среды в водном растворе соли Be(II) сульфата:	1
	1) кислая 2) щелочная 3) нейтральная	
009	Какой из элементов при реакции с кислородом образует	2
	пероксид?	
	1) Li 2) Na 3) K 4) Be	
010	Какой из элементов при реакции с кислородом образует оксид?	1
	1) Li 2) Na 3) K 4) Ba	

Тема 16. Химия s-элементов Периодической системы элементов Д.И. Менделеева. Часть 2. Тестовые задания с выбором одного или нескольких правильных ответов

No OC	Задание	Ответ
001	В реакции барий нитрата с калий хроматом участвуют ионы: 1) Ba ²⁺ , NO ₃ - 2) K ⁺ , CrO ₄ ²⁻ 3) Ba ²⁺ , CrO ₄ ²⁻	3
002	Наиболее выраженными основными свойствами обладает гидроксид: 1) Be(OH) ₂ 2) Mg(OH) ₂ 3) Ca(OH) ₂ 4) Ba(OH) ₂	4
003	Ионы Ca ²⁺ из раствора кальций хлорида наиболее полно можно осадить реактивом: 1) Na ₂ SO ₄ 2) (NH ₄) ₂ C ₂ O ₄ 3) KF	2
004	Какая из солей дает кислую реакцию (pH < 7) в водном растворе? 1) нитрат берилия 2) нитрат калия 3) сульфат натрия 4) карбонат калия	1
005	Какие ионы не участвуют в реакции взаимодействия кальция хлорида с аммония оксалатом? 1) Ca ²⁺ , Cl ⁻ 2) NH ₄ ⁺ , Cl ⁻ 3) NH ₄ ⁺ , C ₂ O ₄ ²⁻	2
006	Карбонатная (временная) жесткость воды может быть устранена добавлением гашеной извести. В реакции между кальция гидрокарбонатом и кальция гидроксидом участвуют ионы 1) Ca ²⁺ , H ⁺ , HO ⁻ 2) CO ₃ ²⁻ , HO ⁻ , HCO ₃ ⁻ 3) Ca ²⁺ , HO ⁻ , HCO ₃ ⁻	2
007	Реакция среды в водном растворе соли Be(II) сульфата: 1) кислая 2) щелочная 3) нейтральная	1
008	Какая из следующих солей наименее растворима в воде? 1) Na ₂ CO ₃ 2) Li ₂ CO ₃ 3) K ₂ CO ₃	2
009	Какая из солей в водном растворе подвергается гидролизу в наибольшей степени? 1) Na ₂ SO ₄ 2) BaCl ₂ 3) BeCl ₂ 4) Mg(NO ₃) ₂	3
010	Какая из солей в водном растворе подвергается гидролизу по катиону? 1) BaSO ₄ 2) BaCl ₂ 3) Be(NO ₃) ₂ 4) Ca(NO ₃) ₂	3

Тема 17. Химия s- и d-элементов Периодической системы элементов Д.И. Менделеева

No	Задание	Ответ
OC		
001	Наименее растворима в воде следующая соль:	3
	1) SrSO ₄ 2) CaSO ₄ 3) BaSO ₄	
002	Реактивом натрий карбоната наиболее полно можно осадить	2
	ион:	
	1) $Mg^{2+}2) Sr^{2+}$ 3) Ba^{2+}	
003	Электронную формулу [Xe] 4f ¹⁴ 5d ³ имеет ион:	1
	1) W^{3+} 2) Tc^{4+} 3) $Mn^{2+}4$) Mo^{3+}	
004	Какой ион имеет электронную формулу [Kr] 4d ³ ?	2
	1) Cr^{3+} 2) Mo^{+3} 3) Mo^{6+} 4) Fe^{2+}	
005	Какой ион имеет электронную формулу [Ar] 3d ⁴ ?	4
	1) Cr^{3+} 2) Mn^{4+} 3) Mn^{2+} 4) Cr^{2+}	
006	Какой ион имеет электронную формулу [Ar] 3d ⁵ ?	1
	1) Mn^{2+} 2) Mn^{4+} 3) Cr^{3+} 4) Fe^{2+}	

007	Какая из следующих солей наиболее растворима в воде?	2
	1) BaCO ₃ 2) CaSO ₄ 3) CaC ₂ O ₄	
008	Что представляет собой превращение	2
	$Cr^{3+} \rightarrow CrO_4^{2-}$ относительно хрома:	
	_	
	1) восстановление в кислой среде	
	2) окисление в щелочной среде	
	3) диспропорционирование	
	4) без изменения степени окисления	
009	Какая электронная формула соответствует иону Zn ²⁺ ?	4
	1) [Kr] $4d^{10}$ 2) [Ar] $4s^23d^{10}$ 3)[Ar] $4s^23d^8$	
	4) [Ar] 3d ¹⁰	
010	Какая электронная формула соответствует иону Cu ²⁺ ?	3
	1) [Ar] 3d ⁹ 2) [Kr] 4d ⁹ 3)[Ar] 3d ¹⁰ 4) [Ar] 4s ¹ 3d ⁷	

Тема 18. Химия d-элементов Периодической системы элементов Д.И. Менделеева. Часть 1.

№	Задание	Ответ
OC		
001	Электронную формулу [Ar] 3d4 имеет ион:	1
	1) Cr^{2+} 2) Cr^{3+} 3) Fe^{2+} 4) Mn^{2+}	
002	Превращение $MnO_2 \rightarrow Mn^{2+}$ относительно марганца	2
	представляет собой:	
	1) окисление в щелочной среде	
	2) восстановление в кислой среде	
	3) окисление в кислой среде	
	4) диспропорционирование	
003	Хром в степени окисления +3 в сильно щелочной среде	1
	существует в форме:	
	1) $[Cr(OH)_6]^{3-}$ 2) $[Cr(H_2O)_6]^{3+}$	
	3) $[Cr(OH)_2(H_2O)_4]^+$ 4) $[Cr(OH)_3(H_2O)_3]^0$ Что представляет собой превращение $Cr^{3+} \rightarrow Cr_2O_7^{2-}$	
004		2
	относительно хрома?	
	1) восстановление в кислой среде	
	2) окисление в кислой среде	
	3) восстановление в щелочной среде	
	4) окисление в щелочной среде	
005	Что представляет собой превращение	2
	$[\operatorname{Cr}(\operatorname{OH})_6]^{3-} \to [\operatorname{Cr}(\operatorname{H}_2\operatorname{O})_6]^{3+}$	
	относительно хрома?	
	1) окисление в кислой среде	
	2) без изменения СО в кислой среде	
	3) без изменения СО в щелочной среде	
	4) восстановление в кислой среде	
006	В какой форме существует хром в степени окисления +3 в	3
	щелочной среде?	
	1) $[Cr(OH)(H_2O)_5]^{2+}$ 2) $[Cr(H_2O)_6]^{3+}$ 3) $[Cr(OH)_3(H_2O)_3]^0$ 4) $[Cr(OH)_2(H_2O)_4]^+$	
	3) $[Cr(OH)_3(H_2O)_3]^0$ 4) $[Cr(OH)_2(H_2O)_4]^+$	
007	Какой ион имеет электронную формулу [Ar] 3d ³ ?	2
	1) Te^{4+} 2) Cr^{3+} 3) Mn^{2+} 4) Mn^{3+}	
800	Каким реактивом следует действовать на раствор сулемы для	1

	получения ртуть(II) амидохлорида?			
	1) аммиаком			
	2) аммиаком в смеси с водородпероксидом			
	3) аммоний хлоридом			
	4) смесью аммиака с аммоний хлоридом			
009	Что представляет собой превращение	2		
	$Mn(OH)_2 \rightarrow MnO_4$ относительно марганца?			
	1) восстановление в кислой среде			
	2) окисление в кислой среде			
	3) восстановление в щелочной среде			
	4) окисление в щелочной среде			
010	Какое вещество образуется при добавлении карбоната калия к	2		
	водному раствору хрома(III) сульфата?			
	1) гидроксид калия 2) гидроксид хрома(III)			
	3) хромат калия 4) карбонат хрома			

Тема 19. Химия d-элементов Периодической системы элементов Д.И. Менделеева. Часть 2.

No	Задание	Ответ	
OC			
001	Превращение $MnO_2 \rightarrow K_2MnO_4$ относительно марганца		
	представляет собой:		
	1) окисление в щелочной среде		
	2) восстановление в щелочной среде		
	3) окисление в кислой среде		
	4) диспропорционирование	_	
002	рН водного раствора хром(III) хлорида имеет значение:	3	
	1) $pH = 7$ 2) $pH > 7$ 3) $pH < 7$		
003	Для растворения серебра иодида следует использовать:	2	
	1) H ₂ O 2) Na ₂ S ₂ O ₃ 3) KCl 4) NH ₃ ·H ₂ O		
004	Какое соединение серебра получится после добавления азотной	4	
	кислоты к раствору диамминсеребро хлорида?		
	1) $AgNO_3$ 2) $H[Ag(NO_3)_2]$ 3) $NH_4[Ag(NO_3)_2]$		
	4) AgCl		
005	Укажите рН водного раствора марганец(II)нитрата.	3	
	1) pH=7 2) pH > 7 3) pH < 7		
006	Золото можно растворить в:	3	
	1) смеси HCl и CH ₃ COOH 2) KOH		
	3) смеси азотной (концентрированной) и соляной кислот		
	4) аммиаке		
007	Y II (WY)	4	
007	Укажите рН водного раствора хром(III) хлорида.	1	
0.00	1) pH < 7 2) pH > 7 3) pH=7 Что представляет собой превращение $Au^0 \rightarrow [Au(CN)_2]^-$		
008	Что представляет собой превращение $Au^0 \rightarrow [Au(CN)_2]^-$	4	
	относительно золота?		
	1) окисление в кислой среде		
	2) восстановление в нейтральной среде		
	3) восстановление в щелочной среде		
000	4) окисление в присутствии растворимых цианидов		
009	Какое вещество образуется при подщелачивании водного	3	
	раствора калия дихромата?		

	1) гидроксид калия 2) гидроксид хрома(III) 3) хромат	
	калия	
010	Каким реактивом следует действовать на раствор сулемы для	4
	получения аммиачного комплекса ртути(II)?	
	1) аммиаком	
	2) аммиаком в смеси с водородпероксидом	
	3) аммоний хлоридом	
	4) смесью аммиака с аммоний хлоридом	

Тема 20. Химия d-элементов Периодической системы элементов Д.И. Менделеева. Часть 3.

No	Задание	Ответ
OC		
001	В результате реакции КОН с раствором AgNO ₃ образуется:	2
	1) AgOH 2) Ag ₂ O 3) AgO 4) K[Ag(OH) ₂]	
002	При взаимодействии избытка раствора аммиака с раствором	2
	цинка нитрата образуется:	
	1) $Zn(OH)_2$ 2) $[Zn(NH_3)_4](NO_3)_2$	
	3) ZnO 4) $Zn(OH)NO_3$	
003	Чтобы осуществить превращение $K_2FeO_4 \rightarrow Fe(OH)_3$ следует	1
	взять реактивы:	
	1) Cl ₂ и KOH 2) Cl ₂ и H ₂ O 3) KI и KOH	
	4) H ₂ O ₂ и H ₂ SO ₄	
004	Гидролиз магния борида протекает с образованием:	4
007	1) BH_3 2) $B(OH)_3$ 3) BO_3^{3-} 4) B_2H_6	
005	Каким реактивом не удается перевести в раствор серебро (I)	4
	оксид?	
	1) аммиаком 2) калий цианидом 3) азотной кислотой 4) соляной кислотой	
006	3) азотной кислотой 4) соляной кислотой	1
006	Что представляет собой превращение $Hg_2Cl_2 \rightarrow HgCl_2$	1
	относительно Hg? 1) окисление	
	2) без изменения степени окисления	
	3) диспропорционирование	
	4) восстановление	
007	Ртуть(II) нитрат при действии избытка калий иодида перейдет в:	4
007	1) ртуть(I) иодид 2) ртуть(II) иодид	'
	3) ртуть 4) калий тетраиодомеркурат(II)	
008	Какое вещество является самым слабым окислителем?	4
	1) GaCl ₃ 2) InCl ₃ 3) TlCl ₃ 4) AlCl ₃	
009	Какое вещество окажется одним из продуктов реакции между	2
	раствором цинка сульфата и аммиака в избытке?	
	1) цинка гидроксид	
	2) тетрамминцинка(II) сульфат	
	3) аммония тетрагидроксоцинкат(II)	
	4) тетрааминцинка(II) гидроксид	
010	Кремний растворяется в концентрированных щелочах с	4
	образованием:	
	1) силана 2) кремния ортосиликата	
	3) кремниевых кислот 4) кремния метасиликата	

Тема 21. Химия d- и p-элементов Периодической системы элементов Д.И. Менделеева.

№ OC	Задание	Ответ
001	Превращение $Hg \to Hg_2(NO_3)_2$ относительно Hg представляет собой:	1
	1) окисление азотной кислотой при избытке ртути	
	2) восстановление в присутствии нитрат-иона	
	3) окисление ртути избытком азотной кислоты	
	4) комплексообразование	
002	Гидролиз буры происходит с образованием:	2
002	1) HB_4O_7 2) $B(OH)_3$ 3) $(BO_3)_3$ 4) $(BO_3)_4$	1
003	Борная кислота является:	1
	1) одноосновной	
	2) двухосновной	
004	3) трехосновной В ионе В(ОН) ₄ - имеет место:	3
004	1) sp – гибридизация 2) sp ² – гибридизация	3
	1) sp — гиоридизация 2) sp — гиоридизация 3) sp ³ — гибридизация	
	4) образование трехцентровой связи	
005	Что представляет собой превращение $Hg_2^{2+} \rightarrow Hg^0 + Hg^{2+}$	3
000	относительно Нд?	
	1) окисление	
	2) без изменения степени окисления	
	3) диспропорционирование	
	4) восстановление	
006	Гидролиз лития аланата (тетрагидридоалюмината) протекает с	1
	образованием:	
	1) H_2 2) AlH_33) $(Al_2H)_n$ 4) Al_2H_6	
007	В основе фармакопейной реакции анализа препаратов бора	1
	лежит качественная реакция борной кислоты:	
	1) со спиртами 2) с сильными кислотами	
000	3) с основаниями 4) с кислородом	
008	Гидролиз галогенидов бора приводит к образованию	4
	1) тетраборат-иона 2) буры	
000	3) безводного натрия 4) ортоборной кислоты	2
009	Действием какого реактива можно разрушить комплекс [Ag(NH ₃) ₂]Cl?	2
	[Ag(NH ₃) ₂]С1? 1) KNO ₃ (раствор) 2) Na ₂ S(раствор)	
	3) KCl(раствор) 2) Na ₂ S(раствор)	
010	У какого из оксида более всего выражены кислотные свойства?	2
310	1) GeO ₂ 2) SiO ₂ 3) SnO ₂ 4) PbO ₂	-

Тема 22. Химия р-элементов III-V групп Периодической системы элементов Д.И. Менделеева. Часть 1

Тестовые задания с выбором одного или нескольких правильных ответов

№	Задание	Ответ
OC		

001	Ионизация борной кислоты происходит с образованием иона: 1) $H_2BO_3^-$ 2) $(BO_3)_3^{3-}$ 3) $B_4O_7^{2-}$ 4) $B(OH)_4^-$	4
	3) $B_4O_7^{2-}$ 4) $B(OH)_4^{-}$	
002	При растворении в соляной кислоте силицида магния	1
	образуется:	
	1) SiH_4 2) H_2 3) $Mg(OH)_2$ 4) SiO_2	
003	Карбид алюминия гидролизуется с образованием:	3
	1) ацетилена 2) этилена 3) метана	
	4) углекислого газа	
004	При растворении СО ₂ в водном растворе существуют:	4
	1) только молекулы H ₂ CO ₃	
	3) СО ₂ (водный)	
	4) все частицы, перечисленные в а) б) в)	
005	В какой молекуле имеются трехцентровые связи между бором и	1
	водородом?	
	1) B_2H_62) HBF_4 3) $B(CH)_3$ 4) $K[BH_4]$	
006	При гидролизе силанов образуется:	1
	1) водород 2) кремний 3) кремниевые кислоты	
	4) силоксаны	
007	В каком веществе степень окисления углерода численно не	4
	совпадает с его валентностью?	
	1) CO ₂ 2) углерод(IV) хлорид	
	3) СН ₄ 4) формальдегид	
800	Кремний растворяется в азотной кислоте в присутствии HF с	4
	образованием:	
	1) силана 2) кремния тетрафторида	
	3) кремниевых кислот	
	4) кремнефтористоводородной кислоты	
009	Тип гибридизации углерода в карбине:	1
	1) sp 2) sp ² 3) sp ³ 4) sp ³ d ²	
010	Какие реагенты не реагируют друг с другом?	4
	1) $Bi(OH)_3 + HCl$	
	2) H3SbO3 + HCl	
	3) $H_3AsO_3 + HCl$	
	4) H3PO3 + HCl	

Тема 23. Химия р-элементов III-V групп Периодической системы элементов Д.И. Менделеева. Часть 2

No	Задание	Ответ
OC		
001	В карбине углерод имеет тот же тип гибридизации, что и в	1
	молекуле одного из соединений:	
	1) HSCN 2) H ₂ CO ₃ 3) CH ₄ 4) C ₂ H ₄	
002	Наименьшую термодинамическую устойчивость имеет гидрид:	2
	1) SiH ₄ 2) PbH ₄ 3) GeH ₄ 4) SnH ₄	
003	Самый слабый восстановитель:	3
	1) GaCl2) InCl 3) TlCl 4) AlCl	
004	Укажите какая соль хлорид олова(II) или хлорид олова(IV)	2
	гидролизуется в большей степени.	
	1) хлорид олова(II) 2) хлорид олова(IV)	
	3) степень гидролиза одинакова	

	4) соли не подвергаются гидролизу	
005	Комплексные цианиды тяжелых металлов $[M(CN)_4]^{2-}$ образуются при действии на осадок $M(CN)_2$: 1) цианидов щелочных металлов 2) азотной кислоты	1
	3) аммиака	
	4) тиоцианат-иона	
006	В результате какой из реакций получается арсин?	4
	1) $As_2O_3 + NaOH = 2) As_2O_3 + HC1 =$	
	3) $As_2O_3 + KClO_3 = 4)As_2O_3 + Zn + H_2SO_4 =$	
007	Какое из веществ наименее термодинамически устойчиво?	1
	1) PbCl ₄ 2) SnCl ₄ 3) SiCl ₄ 4) GeCl ₄	
008	Укажите наиболее устойчивый гидрид:	2
	1) SnH ₄ 2) SiH ₄ 3) GeH ₄ 4) PbH ₄	
009	Карбид кальция гидролизуется с образованием:	1
	1) ацетилена 2) этилена 3)метана	
	4) углекислого газа	
010	С каким веществом реагирует разбавленная Н ₃ РО ₄ ?	4
	1) NaI 2) KMnO ₄ 3) NH ₄ Cl 4) AgNO ₃	

Тема 24. Химия р-элементов III-V групп Периодической системы элементов Д.И. Менделеева. Часть 3.

No॒	Задание	Ответ
OC		
001	Вещество, наименее устойчивое к нагреванию:	2
	1) SiCl ₄ 2) PbCl ₄ 3) SnCl ₄ 4) CO ₂	
002	Для получения N ₂ O используют:	2
	1) NH ₄ NO ₂	
	2) NH ₄ NO ₃	
	3) NH ₄ Cl	
	4) (NH ₄) ₂ S	
003	Наиболее термодинамически устойчивое вещество:	1
	1) алюминий(III) оксид	
	2) галлий(III) оксид	
	3) индий(III) оксид	
	4) таллий(III) оксид	
004	Что образуется при взаимодействии PCl ₅ с избытком воды при	3
	нагревании?	
	1) реакция не идет	
	2) POCl ₃	
	$3) H_3PO_4$	
	4) HPO ₃ - ²	
005	Какое вещество наиболее устойчиво к действию	4
	восстановителей?	
	1) PbO ₂ 2) GeO ₂ 3) SnO ₂ 4) SiO ₂	
006	Какой из ионов является наиболее сильным окислителем?	4
	1) PO_4^{3-2}) AsO_3^{3-} 3) AsO_4^{3-} 4) SbO_4^{3-}	
007	С каким веществом оксид сурьмы(V) не реагирует?	4
	1) CaO 2) HCl 3) NaOH 4) O ₂	

008	Одинаковы ли значения рН растворов солей калия карбоната и	2
	калия гидрокарбоната с одинаковыми концентрациями?	
	1) рН растворов двух солей одинаковы	
	2) раствор карбоната калия более щелочной	
	3) раствор карбоната калия более кислый	
009	Укажите наиболее слабый окислитель:	1
	1) Al ₂ O ₃ 2) Ga ₂ O ₃ 3) In ₂ O ₃ 4) Tl ₂ O ₃	
010	В результате какой из приведенных реакций можно получить	1
	NaBiO ₃ ?	
	1)Bi(OH) ₃ + Cl ₂ + NaOH = 2) BiCl ₃ +Cl ₂ +H ₂ SO ₄ =	
	3) $Bi + NaOH =$ 4) $Bi + HNO_3 =$	

Тема 25. Химия р-элементов IV-VI групп Периодической системы элементов Д.И. Менделеева.

ВЫБЕРИТЕ ОДИН ПРАВИЛЬНЫЙ ОТВЕТ

№ OC	Задание	Ответ
001	Кремний тетрафторид гидролизуется с образованием: 1) силана 2) элементного кремния 3) фтора 4) кремнефтористоводородной кислоты	4
002	Окислительно-восстановительной двойственностью свойств в водном растворе обладает: 1) NH_3 2) KNO_2 3) KNO_3 4) $KBiO_3$	2
003	Максимальная валентность фосфора:	3
	1) 3 2) 5 3) 6 4) 4 В результате какой реакции может быть получен металлический	
004	висмут?	2
	1) $BiCl_3 + Cl_2 + NaOH =$ 2) $BiCl_3 + Fe + HCl =$	
	3) $Bi(OH)_3 + HC1 = 4)Bi(OH)_3 + NaOH =$	
005	Какая из частиц обладает наиболее сильными донорными свойствами (донор электронной пары)?	1
	1) NH ₃ 2) PH ₃ 3) AsH ₃ 4) SbH ₃	
006	Какое из приведенных соединений проявляет наиболее кислые свойства?	2
	1) Bi(OH) ₃ 2) H ₃ AsO ₄ 3) H ₃ AsO ₃ 4) H ₃ SbO ₃	
007	Какой из приведенных ионов является самым сильным окислителем? 1) $PO_4^{3-}2$) AsO_4^{3-} 3) SbO_4^{3-} 4) BiO_3^{-}	4
008	Какое вещество характеризуется наибольшей окислительной активностью?	4
	1) P ₂ O ₅ 2) As ₂ O ₅ 3) Sb ₂ O ₅ 4) Bi ₂ O ₅	
009	Какова наиболее устойчивая степень окисления висмута?	3
	1) -3 2) 0 3) +3 4) +5	
010	Какая степень окисления наиболее характерна для селена и теллура?	4
	1) + 4 2) +6 3) -2 4) 0	

Тема 26. Химия р-элементов V-VI групп Периодической системы элементов Д.И. Менделеева. Часть 1.

Тестовые задания с выбором одного или нескольких правильных ответов

№ OC	Задание	Ответ
001	Соединения типа 9_2O_5 и 9_2S_5 неизвестны для элемента:	4
	1) P 2) As 3) Sb 4) Bi	
002	Кислоту состава НЭО ₂ образует:	1
	1) азот 2) фосфор 3) сурьма 4) висмут	
003	При взаимодействии As с HNO ₃ (конц.) при нагревании	3
	образуется:	
	1) $As(NO_3)_3$ 2) H_3AsO_3 3) H_3AsO_4 4) $As(NO_3)_5$	
004	Какая частица может быть акцептором электронной пары?	2
227	1) NH ₄ +2) BF ₃ 3) BF ₄ 4) NH ₃	
005	Какое вещество образуется при гидролизе сурьма(III) хлорида?	1
006	1) SbOCl 2) Sb ₂ O ₃ 3) Sb(OH) ₃ 4) Sb(OH)Cl ₂	2
006	Как изменяется ОЭО в ряду: О, S, Se, Te, Po?	2
	1) увеличивается 2) уменьшается 3) не изменяется	
007		2
007	Как изменяются восстановительные свойства в ряду: SO_2 , SeO_2 , TeO_2 , PoO_2 ?	
	1) увеличиваются	
	2) уменьшаются	
	3) не изменяются	
008	Как изменяются окислительные свойства в ряду: SO ₃ , SeO ₃ ,	1
	TeO ₃ ?	
	1) увеличиваются	
	2) уменьшаются	
	3) не изменяют	
009	Какой из оксидов обладает наибольшей кислотностью?	1
	1) P_2O_5 2) P_2O_3 3) As_2O_3 4) Sb_2O_5	
010	Какую роль в окислительно-восстановительных реакциях могут	2
	играть дисульфиды?	
	1) окислители и восстановители	
	2) только восстановители	
	3) только окислители	
	4) участие в ОВР не характерно	

Тема 27. Химия р-элементов V-VI групп Периодической системы элементов Д.И. Менделеева. Часть 2.

Тестовые задания с выбором одного или нескольких правильных ответов

№	Задание	Ответ
OC		
001	С выделением свободного хлора реагируют вещества:	4
	1) $Na_3PO_4 + HC1 =$ 2) $Na_3AsO_4 + HC1 =$	
	3) $Na_3SbO_4 + HCl =$ 4) $NaBiO_3 + HCl =$	
002	SbH ₃ можно получить в результате реакции:	4
	1) $Sb + H_2 =$ 2) $Sb_2O_3 + H_2 =$	
	3) $Sb_2O_3 + HCl = 4) Sb_2O_3 + HCl + Zn =$	
003	Связь с NH ₃ по донорно-акцепторному механизму образует	3
	молекула:	

	1) PH ₃ 2) CO ₂ 3) BF ₃ 4) N ₂ H ₄	
004	Как изменяется степень гидролиза солей в ряду: KBrO ₄ , KBrO ₃ , KBrO ₂ , KBrO? 1) увеличивается	1
005	2) уменьшается 3) не изменяется	1
005	Какое из приведенных соединений является самым сильным	1
	восстановителем?	
00.5	1) H ₃ PO ₃ 2) H ₃ AsO ₃ 3) Sb(OH) ₃ 4) Bi(OH) ₃	
006	До чего окисляется H ₂ S концентрированной азотной кислотой	3
	при нагревании?	
	1) S 2) SO_2 3) H_2SO_4	
007	При растворении серебра бромида в тиосульфате натрия	1
	образуется:	
	1) дитиосульфатоаргентат(I)	
	2) тиосульфат серебра	
	3) свободное серебро и SO ₂	
008	Что образуется при растворении углерода в концентрированной	1
	серной кислоте?	
	1) SO_2 2) H_2S 3) S	
009	В результате какой реакции можно получить K[Sb(OH) ₆]?	2
	1) $HSbO_2 + KOH =$ 2) $HSbO_2 + KOH + Cl_2 =$	
	3) $Sb + KOH =$ 4) $SbCl_3 + KOH =$	
010	Какой ион гидролизуется в водном растворе соли (NH ₄) ₂ S?	3
	1) NH ₄ ⁺ 2) S ²⁻ 3) оба иона 4) ни один	

Тема 28. Химия р-элементов V-VII групп Периодической системы элементов Д.И. Менделеева.

№	Задание	Ответ
OC		
001	Дифтор окисляет серу до степени окисления:	1
	1) + 6 $2) + 4$ $3) + 2$	
002	Энергия сродства к электрону в ряду: O, S, Se, Te:	2
	1) увеличивается	
	2) уменьшается	
	3) не изменяется	
003	Энергия сродства к электрону в ряду F_2 , Cl_2 , Br_2 , I_2 :	2
	1) увеличивается	
	2) уменьшается 3)не изменяется	
004	Как изменяется сила кислот в ряду: H_2S , H_2Se , H_2Te ?	1
	1) увеличивается	
	2) уменьшается	
	3) не изменяется	
005	Какое из следующих соединений подвергается гидролизу в	2
	наименьшей степени (при одинаковых концентрациях и	
	температуре)?	
	1) Na ₂ Se 2) Na ₂ Te 3) K ₂ S 4) Na ₂ S	
006	Какой реактив можно взять для осуществления процесса: Mn ²⁺	3
	\rightarrow MnO ₄ -?	
	1) SO_3^2 -2) SO_4^2 -3) $S_2O_8^2$ -4) $S_2O_3^2$ -	
007	Что образуется при взаимодействии концентрированной H ₂ SO ₄ с	1
	Cu?	

	1) SO_2 2) S 3) H_2S 4) H_2	
008	В каком из соединений нет связи между атомами серы? 1) H ₂ S ₂ O ₃ 2) H ₂ S ₂ 3) H ₂ S ₂ O ₈ 4) H ₂ S ₂ O ₆	3
009	Какое вещество образуется при гидролизе висмута(III) хлорида? 1) BiOCl 2) Bi ₂ O ₃ 3) Bi(OH) ₃ 4) Bi(OH)Cl ₂	1
010	Как меняется сила кислот в ряду: HClO, HClO ₂ , HClO ₃ , HClO ₄ ? 1) увеличивается 2) уменьшается 3) не изменяется	1

Тема 29. Химия р-элементов VI-VII групп Периодической системы элементов Д.И. Менделеева. Часть 1.

$N_{\underline{0}}$	Задание	Ответ
OC		
001	Восстановительная активность в ряду: S ²⁻ , Se ²⁻ ,Te ²⁻ :	2
	1) уменьшается	
	2) увеличивается	
	3) не изменяется	
002	При окислении S ₂ O ₃ ²⁻ иона хлором образуется:	2
	1) $S_4O_6^{2-}$ 2) $SO_4^{2-}3) SO_3^{2-}$	
003	Сила кислот в ряду H ₂ S, H ₂ Se, H ₂ Te:	1
	1) увеличивается	
	2) уменьшается	
	3) не изменяется	
004	Что образуется при добавлении к раствору тиосульфата натрия	4
	нескольких капель соляной кислоты?	
	1) $S_4O_6^{2-}$ 2) $SO_3^{2-}3) SO_4^{2-}4) S$	
005	Что образуется при гидролизе SO ₂ Cl ₂ ?	1
	1) H ₂ SO ₄ 2) H ₂ SO ₃ 3) H ₂ S 4) SO ₂	
006	Как изменяется сила кислот в ряду: HOF, HOCl, HOBr, HOI?	2
	1) увеличивается	
	2) уменьшается	
	3) не изменяется	
007	Как изменяется реакционная способность в ряду: NaF, NaCl,	1
	NaBr, NaI?	
	1) увеличивается	
	2) уменьшается	
	3) не изменяется	
008	Как изменяется степень гидролиза в ряду: NaClO, NaClO ₂ ,	2
	NaClO ₃ , NaClO ₄ ?	
	1) увеличивается	
	2) уменьшается	
000	3) не изменяется	
009	Как изменяется энергия сродства к электрону в ряду: S, Se, Te,	2
	Po?	
	1) увеличивается	
	2) уменьшается	
010	3) не изменяется	2
010	Что образуется при взаимодействии концентрированной H ₂ SO ₄ с	3
	Hg?	

1) H ₂ S	
2) S	
3) SO ₂	
4) Нg пассивируется H ₂ SO ₄	

Тема 30. Химия р-элементов VI-VII групп Периодической системы элементов Д.И. Менделеева. Часть 2.

Тестовые задания с выбором одного или нескольких правильных ответов

No	Задание	Ответ
OC		
001	Для осуществления процесса: $S_2O_3^{2-} \rightarrow SO_4^{2-}$ можно взять	1
	реактив:	
	1) Cl ₂ (избыток) 2) Br ₂ (недостаток) 3) I ₂ (раствор)	
002	При растворении хлорной извести в воде образуется:	3
	1) Cl ₂ 2) HCl 3) CaCl ₂	
003	Взаимодействие Br ₂ с КОН относится (указать тип реакции):	1
	1) диспропорционирование 2) окисление	
004	3) щелочной гидролиз	
004	Пероксодисульфат калия в окислительно-восстановительных	1
	реакциях является:	
	1) сильным окислителем	
	2) слабым восстановителем	
005	3) окислителем и восстановителем Как изменяются кислотные свойства в ряду: HF, HCl, HBr, HI?	1
003	1) увеличиваются	1
	2) уменьшаются	
	3) не изменяются	
006	Какой реактив можно взять для осуществления процесса: $S_2O_3^{2-}$	4
	\rightarrow S ₄ O ₆ ²⁻ ?	·
	1) F ₂ (газ) 2) Cl ₂ (раствор) 3) Br ₂ (раствор)	
	4) I ₂ (раствор)	
007	Какую роль в окислительно-восстановительных реакциях может	2
	играть KClO ₄ ?	
	1) окислитель в водном растворе	
	2) окислитель в расплаве	
	3) окислитель и в растворе и в расплаве	
008	Какой реактив следует взять для осуществления превращения:	3
	$NaBrO_3 \rightarrow Br_2$	
	1) HBr 2) NaMnO ₄ 3) Na ₂ CrO ₄	
000	4) H ₂ O	2
009	Что образуется при окислении тиосульфат-иона избытком	3
	брома?	
010	1) S ₄ O ₆ ² 2) SO ₃ ² 3) SO ₄ ²	3
010	В каком веществе нет химических связей между атомами серы?	3
	1) натрий дисульфид 2) сероуглерод	
	3) натрий дитионит	
	3) натрии дитионит 4) натрий тиосульфат	
	т) патрии тиосульфат	

N_{Π}/Π	Условие задачи	Ответ
1.	Вычислить рН водного раствора муравьиной кислоты с молярной концентрацией 0,01 моль/л.	2,87
2.	Вычислить pH раствора хлорной кислоты с молярной концентрацией 0,01 моль/л.	2
3.	Вычислить pH водного раствора HCN с молярной концентрацией 0,01 моль/л.	5
4.	Вычислить рН водного раствора угольной кислоты с молярной концентрацией 0,01 моль/л.	4,26
5.	Вычислить рН водного раствора сернистой кислоты с молярной концентрацией 0,01 моль/л.	1,96
6.	Вычислить рН водного раствора хлорноватистой кислоты с молярной концентрацией 0,01 моль/л.	4,765
7.	Вычислить рН водного раствора азотистой кислоты с молярной концентрацией 0,01 моль/л.	2,65
8.	Вычислить рН водного раствора уксусной кислоты с молярной концентрацией 0,01 моль/л.	3,37
9.	Вычислить рОН водного раствора аммиака с молярной концентрацией 0,01 моль/л.	3,37
10.	Вычислить pH водного раствора HF с молярной концентрацией 0,01 моль/л.	2,57
11.	Вычислить рН водного раствора карбоната натрия с молярной концентрацией 0,01 моль/л.	11,2
12.	Вычислить рН водного раствора фосфата натрия с молярной концентрацией 0,01 моль/л.	12,1
13.	Вычислить pH водного раствора ацетата натрия с молярной концентрацией 0,01 моль/л.	8,37
14.	Вычислить рН водного раствора формиата натрия с молярной концентрацией 0,01 моль/л.	7,83
15.	Вычислить рН водного раствора сульфата алюминия с молярной концентрацией 0,005 моль/л.	3,43
16.	Вычислить pH водного раствора нитрата цинка с молярной концентрацией 0,01 моль/л.	5,80
17.	Вычислить рН водного раствора сульфата железа(III) с молярной концентрацией 0,005 моль/л.	2,11
18.	Определить энтальпию гидратации натрия карбоната: $Na_2CO_3(\kappa) + 10 H_2O \rightarrow Na_2CO_3(\kappa) \cdot 10 H_2O$, если известны энтальпии	-91,2

	растворения безводной соли $\Delta H_{\text{раств.}}(6/B)$ и кристаллогидрата $\Delta H_{\text{раств.}}(\kappa/\Gamma)$: $\Delta H_{\text{раств.}}(6/B) = -24,6 \ кДж/моль; \Delta H_{\text{раств.}}(\kappa/\Gamma) = +66,6 \ кДж/моль$	кДж/моль
19.	Определить энтальпию гидратации натрия сульфата: $Na_2SO_4(\kappa) + 10H_2O \rightarrow Na_2SO_4(\kappa) \cdot 10H_2O$, если известны энтальпии растворения безводной соли $\Delta H_{\text{раств.}}(6/B)$ и кристаллогидрата $\Delta H_{\text{раств.}}(\kappa/\Gamma)$: $\Delta H_{\text{раств.}}(6/B) = 11,3 \ \kappa \text{Дж/моль}; \Delta H_{\text{раств.}}(\kappa/\Gamma) = -10,5 \ \kappa \text{Дж/моль}$	-21,8
20.	Определить энтальпию реакции: $\text{Li}(r) + \text{Na}^+(r) = \text{Li}^+(r) + \text{Na}(r)$, зная энергии ионизации: $ \text{Li}(r) = \text{Li}^+(r) + \text{e}^- \qquad \Delta H_{\text{oбp.}} = 520 \text{ кДж/моль} $ $ \text{Na}(r) = \text{Na}^+(r) + \text{e}^- \qquad \Delta H_{\text{oбp.}} = 496 \text{ кДж/моль} $	24
21.	Определить энтальпию гидратации натрия карбоната (кДж/моль): $Na_2CO_3(\kappa) + 10 \ H_2O \rightarrow Na_2CO_3(\kappa) \cdot \textbf{7} \ H_2O, если известны энтальпии растворения безводной соли \Delta H_{\text{раств.}}(6/B) и кристаллогидрата \Delta H_{\text{раств.}}(\kappa/\Gamma): \Delta H_{\text{раств.}}(6/B) = -24,6 \ \text{кДж/моль}; \ \Delta H_{\text{раств.}}(\kappa/\Gamma) = + 43,9 \ \text{кДж/моль}$	- 68,8
22.	Стандартные энтальпии растворения стронция(II) хлорида и стронция(II) хлорида гексагидрата составляют - 47,6 и +30,9 кДж/моль соответственно. Рассчитать энтальпию гидратации безводного стронция(II) хлорида, кДж/моль.	- 78,5
23.	Определить энтальпию гидратации магния хлорида $\Delta H_{\text{гидратации}}$ (кДж/моль): MgCl ₂ (к) + 2 H ₂ O(ж) \rightarrow MgCl ₂ ·2 H ₂ O(к), если известны энтальпии растворения безводной соли $\Delta H_{\text{раств.}}$ (б/в) и кристаллогидрата $\Delta H_{\text{раств.}}$ (к/г): $\Delta H_{\text{раств.}}$ (б/в) = -149,9 кДж/моль; $\Delta H_{\text{раств.}}$ (к/г) = -85,4 кДж/моль	- 64,5
24.	Определить энтальпию гидратации магния хлорида $\Delta H_{\text{гидратации}}$: $MgCl_2(\kappa) + 4 H_2O(\kappa) \rightarrow MgCl_2 \cdot 4 H_2O(\kappa)$, если известны энтальпии растворения безводной соли $\Delta H_{\text{раств.}}(6/B)$ и кристаллогидрата $\Delta H_{\text{раств.}}(\kappa/\Gamma)$: $\Delta H_{\text{раств.}}(6/B) = -149,9 \ \kappa \ / \chi $	-108,1
25.	Определить энтальпию гидратации магния хлорида $\Delta H_{\text{гидратации}}$: $MgCl_2(\kappa) + 6 H_2O(\kappa) \rightarrow MgCl_2 \cdot 6 H_2O(\kappa)$, если известны энтальпии растворения безводной соли $\Delta H_{\text{раств.}}(6/B)$ и кристаллогидрата $\Delta H_{\text{раств.}}(\kappa/\Gamma)$: $\Delta H_{\text{раств.}}(6/B) = -149,9 \ \kappa Дж/моль; \Delta H_{\text{раств.}}(\kappa/\Gamma) = -12,31 \ \kappa Дж/моль$	- 137,59
26.	Рассчитайте энтальпию реакции: $F(r) + Li(r) \rightarrow F^{-}(r) + Li^{+}(r)$, если известны тепловые эффекты процессов: $F(r) + e^{-} \rightarrow F^{-}(r)$, $\Delta H_{\text{сродства}} = 322 \text{ кДж/моль}$	842

	$\text{Li}(\Gamma) o \text{Li}^+(\Gamma) + \text{e}^-, \qquad \Delta H_{\text{ионизации}} = 520 \text{ кДж/моль}$	
27.	Определить энтальпию гидратации меди(II) сульфата:	- 78,2
	$CuSO_4(\kappa) + 5 H_2O \rightarrow CuSO_4 \cdot 5 H_2O$ (к), если известны энтальпии растворения безводной соли $\Delta H_{\text{раств.}}(\delta/B)$ и	
	энтальпии растворения безводной соли $\Delta H_{\text{раств.}}(6/B)$ и кристаллогидрата $\Delta H_{\text{раств.}}(\kappa/\Gamma)$:	
	кристальногидрата $\Delta H_{\text{раств.}}(\kappa r)$. $\Delta H_{\text{раств.}}(\delta/B) = -66.5 \text{ кДж/моль}; \Delta H_{\text{раств.}}(\kappa/\Gamma) = +11.7 \text{ кДж/моль}$	
28.	При взаимодействии 10 мл раствора H_2O_2 с подкисленным серной	1,97
_0.	кислотой раствором КІ выделилось 2,5 г йода. Вычислить молярную	1,57
	концентрацию эквивалента раствора водорода пероксида.	
29.	Какая масса натрия хромата образуется при действии избытка	1,35 г
	водорода пероксида в щелочной среде на 250 мл раствора хрома(III)	
20	сульфата с молярной концентрацией эквивалента 0,1 моль/л?	0.110
30.	Какой объем (л) (н.у.) кислорода выделится при взаимодействии 100 мл раствора H_2O_2 (C1/х $H_2O_2 = 0,1$ моль/ л) и 200 мл подкисленного	0,112 л
	мл раствора H ₂ O ₂ (C1/x H ₂ O ₂ = 0,1 моль/ л) и 200 мл подкисленного раствора KMnO ₄ (C1/x KMnO ₄ = 0,1 моль/ л)?	
31.	На титрование 2,5 мл раствора щавелевой кислоты с C(1/2H ₂ C ₂ O ₄) =	T = 0.29
31.	0,1 моль/л затрачено 27,5 мл раствора КМnO ₄ . Рассчитать титр (г/л)	· ·
	раствора КМпО ₄ (среда кислая).	г/л
32.	Какая масса (г) водорода дихромата образуется при действии избытка	3,27 г
	водорода пероксида в кислой среде на 300 мл раствора хрома(III)	
	сульфата с молярной концентрацией эквивалента 0,3 моль/л?	
33.	Какую массу (г) марганца(II) сульфата надо добавить к 250 мл водного	0,755 г
	раствора калия перманганата с молярной концентрацией эквивалента 0,04 моль/л для полного осаждения марганца(IV) оксида.	
34.	Какой объем (мл) 20% раствора калия перманганата ($\rho = 1.02 \text{ г/мл}$)	6,45 мл
54.	надо добавить к 250 мл раствора хрома(III) хлорида с молярной	0,43 MJI
	концентрацией эквивалента 0,1 моль/л для полного осаждения	
	марганца(IV) оксида.	
35.	Какая масса (г) марганец(II) сульфата образуется при действии	1,21 г
	избытка водорода пероксида в кислой среде на 200 мл раствора калия	
2.5	перманганата (C1/х KMnO ₄ = 0.2 моль/л)?	0.440
36.	Какой объем (л) (н.у.) кислорода выделится при взаимодействии подкисленного раствора калия дихромата с 200 мл водного раствора	0,448 л
	подкисленного раствора калия дихромата с 200 мл водного раствора водорода пероксида (С $1/x$ $H_2O_2=0,2$ моль/л)?	
37.	Определить молярную концентрацию эквивалента (моль/л) раствора	0,133
37.	хрома(III) сульфата, образующегося при добавлении 200 мл водного	
	раствора водорода пероксида (С 1/х = 0,2 моль/л) к 100 мл слегка	моль/л
	подкисленного серной кислотой раствора калия дихромата.	
38.	Навеска технической щавелевой кислоты массой 0,2 г растворена в 20	90%
	мл воды. На реакцию нейтрализации полученного раствора затрачено	
	40 мл раствора КОН с молярной концентрацией эквивалента равной 0,1 моль/л. Реакция протекает согласно уравнению:	
	2КОН + H ₂ C ₂ O ₄ = K ₂ C ₂ O ₄ + 2 H ₂ O.	
	Определить массовую долю (%) щавелевой кислоты в анализируемом	
	образце.	
39.	Навеска технического (недостаточно очищенного, содержащего	98,6%
	примеси) калия карбоната массой 0,21 г растворена в 50 мл воды.	,
	Полученный раствор реагирует с соляной кислотой по уравнению:	
	$K_2CO_3 + 2 HCl = 2 KCl + H_2O + CO_2$	
	При этом на реакцию затрачено 30 мл раствора HCl с молярной концентрацией эквивалента равной 0,1 моль/л. Определить массовую	
	концентрацией эквивалента равной 0,1 моль/л. Определить массовую долю (%) K_2CO_3 в навеске.	
40.	Навеска технического (т.е. недостаточно очищенного, содержащего	9,84 г/л
	примеси) натрия ацетата массой 0,20 г растворена в 20 мл воды. На	7,0 ⁻ T 1/J1
	реакцию полученного раствора по уравнению:	
	$2 \text{ CH}_3\text{COONa} + \text{H}_2\text{SO}_4 = \text{Na}_2\text{SO}_4 + +2\text{CH}_3\text{COOH}$ израсходовано 24 мл	

	раствора серной кислоты с молярной концентрацией эквивалента	
	равной 0,10 моль/л. Определить титр (г/л) исходного раствора натрия	
41.	ацетата.	00.40/
41.	Навеска технического (т.е. недостаточно очищенного, содержащего примеси) натрия ацетата массой 0,20 г растворена в 20 мл воды. На	98,4%
	реакцию полученного раствора по уравнению:	
	реакцию полученного раствора по уравнению. 2 $CH_3COONa + H_2SO_4 = Na_2SO_4 + +2CH_3COOH$ израсходовано 24 мл	
	раствора серной кислоты с молярной концентрацией эквивалента	
	равной 0,10 моль/л. Определить массовую долю (%) натрия ацетата в	
	анализируемой навеске (образце ацетата).	
42.	На нейтрализацию 30 мл раствора серной кислоты израсходовано 20	4.0 -/-
4 2.	мл раствора щелочи с молярной концентрацией эквивалента 0,15	4,9 г/л
	мл раствора щелочи с молярной концентрацией эквивалента 0,13 моль/л. Рассчитать титр раствора (г/л) серной кислоты.	
43.	Навеска технического (т.е. недостаточно очищенного, содержащего	10.7 -/-
43.	примеси) натрия ацетата массой 0,80 г растворена в 40 мл воды. На	19,7 г/л
	реакцию полученного раствора по уравнению:	
	реакцию полученного раствора по уравнению. 2 $CH_3COONa + H_2SO_4 = Na_2SO_4 + 2 CH_3COOH$ израсходовано 48 мл	
	раствора серной кислоты с молярной концентрацией эквивалента	
	равной 0,20 моль/л. Определить титр раствора по натрия ацетату (г/л).	
44.	Навеска технического (т.е. недостаточно очищенного, содержащего	08 40/
'1'1 .	примеси) натрия ацетата массой 0,80 г растворена в 40 мл воды. На	98,4%
	реакцию полученного раствора по уравнению:	
	реакцию полученного раствора по уравнению. 2 $CH_3COONa + H_2SO_4 = Na_2SO_4 + 2 CH_3COOH$ израсходовано 48 мл	
	раствора серной кислоты с молярной концентрацией эквивалента	
	равной 0,20 моль/л. Определить массовую долю (%) натрия ацетата в	
	анализируемой навеске.	
45.	Навеска технической щавелевой кислоты массой 0,4 г растворена в 40	6,75
4 3.	мл воды. На реакцию нейтрализации полученного раствора затрачено	0,73
	60 мл раствора КОН с молярной концентрацией эквивалента равной	
	0,1 моль/л. Реакция протекает согласно уравнению:	
	2 КОН + $H_2C_2O_4 = K_2C_2O_4 + 2$ H_2O . Определить титр раствора по	
	щавелевой кислоте (Γ/π).	
46.	Навеска технической щавелевой кислоты массой 0,4 г растворена в 40	67,5
	мл воды. На реакцию нейтрализации полученного раствора затрачено	07,5
	60 мл раствора КОН с молярной концентрацией эквивалента равной	
	0,1 моль/л. Реакция протекает согласно уравнению:	
	2 КОН + $H_2C_2O_4 = K_2C_2O_4 + 2$ H_2O . Определить массовую долю	
	щавелевой кислоты в анализируемой навеске (%).	
47.	На нейтрализацию 40 мл раствора натрия гидроксида пошло 24 мл	0,012 г/мл
•	раствора серной кислоты с молярной концентрацией эквивалента 0,5	0,012 1/19131
	моль/л. Рассчитайте титр (г/мл) натрия гидроксида в растворе.	
48.	Навеска технического (недостаточно очищенного, содержащего	4,0
	примеси) калия карбоната массой 0,42 г растворена в 100 мл воды.	',
	Полученный раствор реагирует с соляной кислотой по уравнению:	
	$K_2CO_3 + 2 HCl = 2 KCl + H_2O + CO_2$	
	При этом на реакцию затрачено 58 мл раствора HCl с молярной	
	концентрацией эквивалента равной 0,1 моль/л. Определить титр	
	раствора K_2CO_3 (г/л).	
49.	Навеска технического (т.е. недостаточно очищенного, содержащего	84%
	примеси) натрия гидрокарбоната массой 0,20 г растворена в 30 мл	3.75
	воды. На реакцию полученного раствора с HCl: затрачено 20 мл	
	раствора соляной кислоты с молярной концентрацией эквивалента	
	0,10 моль/л. Реакция протекает согласно уравнению: NaHCO ₃ + HCl =	
	$NaCl + CO_2 + H_2O$.	
	Определить массовую долю (%) натрия гидрокарбоната в	
	анализируемом образце (навеске).	

50.	Навеска технического (т.е. недостаточно очищенного, содержащего примеси) натрия гидрокарбоната массой 0,20 г растворена в 30 мл	5,6 г/л
	воды. На реакцию полученного раствора с НС1: затрачено 20 мл	
	раствора соляной кислоты с молярной концентрацией эквивалента	
	0,10 моль/л. Реакция протекает согласно уравнению: NaHCO ₃ + HCl =	
	$NaCl + CO_2 + H_2O$.	
	Определить титр натрия гидрокарбоната в растворе (г/л).	