Методические материалы для СТУДЕНТОВ по ОРГАНИЗАЦИИ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ по дисциплине:

Микробиология

основная профессиональная образовательная программа высшего образования

- программа специалитета

КОД Наименование ОП: 31.05.01 Лечебное дело

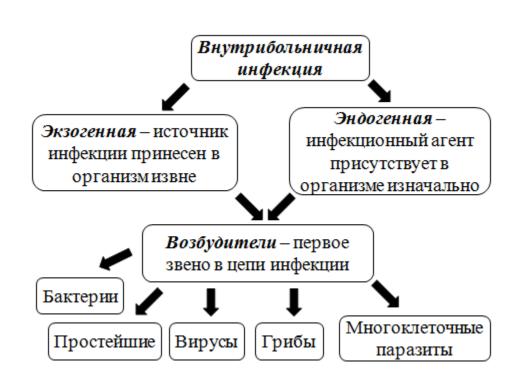
ОСНОВЫ КЛИНИЧЕСКОЙ МИКРОБИОЛОГИИ

Занятие № 8

- **Цель**: Знать таксономическое положение и биологические свойства возбудителей внутрибольничных инфекций;
- **Уметь** подобрать материал и методы исследования;
- **Владеть** оценкой результатов микробиологических исследований.

Клиническая микробиология

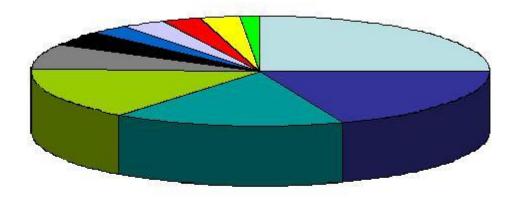
- - изучает взаимоотношения между организмом и микробами в норме, при патологии, в динамике воспалительного процесса с учетом проводимого лечения.
- - исследует условно-патогенные микроорганизмы (УПМ), вызывающие оппортунистические инфекции.


Задачи клинической микробиологии:

- 1.Изучение роли УПМ в этиологии и патогенезе гнойно-воспалительных заболеваний человека.
- 2. Разработка **методов микробиологической диагностики, специфической терапии и профилактики** заболеваний, вызванных УПМ.
- 3.Исследование **лекарственной устойчивости УПМ и ее преодоление.**
- **4.Микробиологический контроль** за антимикробными мероприятиями в больничных стационарах.

Внутрибольничная (госпитальная) инфекция:

- - это инфекция, заражение которой происходит в больничных учреждениях;
- наслаиваясь на основное заболевание, она утяжеляет клиническое течение, затрудняет диагностику и лечение, ухудшает исход заболевания;
- часто связанна с медицинскими вмешательствами.


- Для возникновения ВБИ необходимо наличие следующих звеньев инфекционного процесса:
- источник инфекции (пациент, медработник);
- возбудитель (микроорганизм);
- факторы передачи;
- восприимчивый организм.

Госпитальный штамм

- это микроорганизм, изменившийся в результате циркуляции в отделении по своим генетическим свойствам, в результате мутаций или переноса генов и имеющий несвойственные «дикому» штамму характерные черты, позволяющие ему выживать в условиях стационара.
- Основные черты приспособления это устойчивость к одному или нескольким антибиотикам широкого спектра действия, устойчивость в условиях внешней среды, снижение чувствительности к антисептикам. Госпитальные штаммы очень разнообразны, в каждой больнице или отделении возможно появление своего характерного штамма со свойственным только ему набором биологических свойств.

Спектр возбудителей госпитальных инфекций

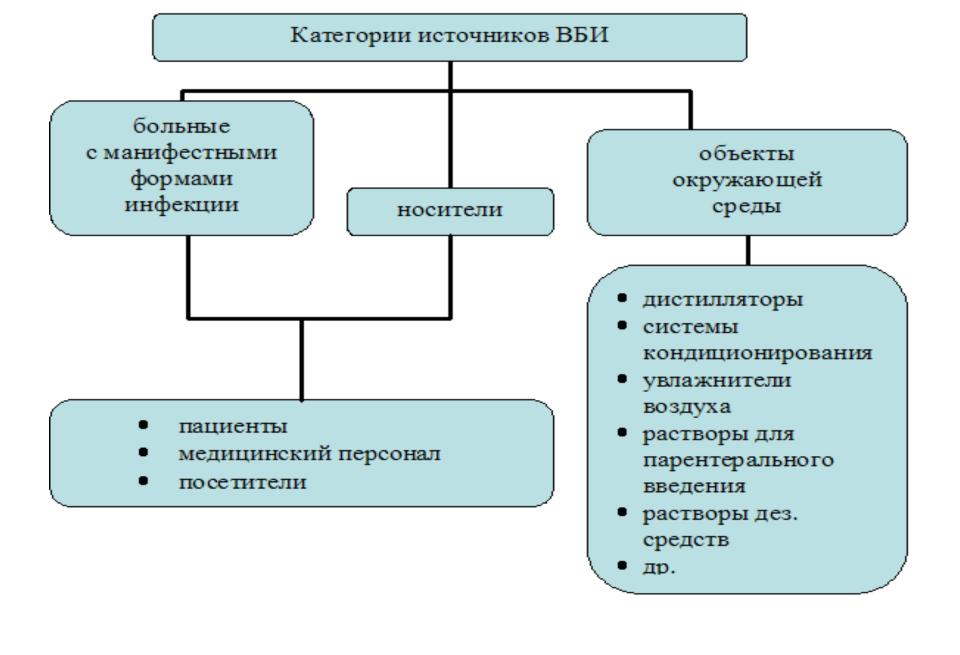
P.aeruginosa

E.coli

Proteus spp.

- S.aureus
- Staphylococcus spp. E.faecium

K.pneumoniae


C.fruendi

A.lwoffi

E.aerogenus

K.oxitoca

- В этиологии внутрибольничных инфекций велика роль **вирусов**:
- простого герпеса, аденовирусов, вируса гриппа, энтеровирусов и др.
- Также внутрибольничные инфекции могут быть вызваны условно-патогенными и патогенными **грибами** (дрожжеподобными, плесневыми, лучистыми).

Классификация внутрибольничных инфекций

- <u>По длительности течения ВБИ</u> делятся на острые, подострые и хронические.
- По тяжести клинических проявлений: легкие, среднетяжелые и тяжелые формы.
- В зависимости <u>от степени</u> <u>распространенности</u> инфекционного процесса различают: генерализованные и локализованные формы внутрибольничной инфекции.

Среди локализованных форм выделяют:

- 1. Инфекции кожи, слизистых и подкожной клетчатки, в т. ч. послеоперационных, ожоговых, травматических ран.
- 2. Инфекции полости рта и ЛОР-органов.
- 3. Инфекции пищеварительной системы.
- 4. Инфекции урогенитального тракта.
- 5. Инфекции костно-суставной системы.
- и другие

ЯТРОГЕННЫЕ ИНФЕКЦИИ

- Являются разновидностью госпитальной инфекции, вызванной непосредственно при диагностических манипуляциях.
- Чаще всего заражение происходит при использовании не стерильного инструментария.

Оппортунистические инфекции

- - вызываются УПМ: Staphylococcus, Streptococcus, Escherichia, Klebsiella, Pseudomonas, Bacteroides, Fusobacterium, грибы рода Candida.
- Одни из них могут обитать в пищевых продуктах, воде, почве.
- Другие входят в состав нормальной микрофлоры организма человека и животных.

УПМ

• Условно-патогенные микробы, обладая низкой степенью патогенности для человека, проявляют свои патогенные свойства только при определенных условиях, например при снижении иммунного статуса организма.

УПМ

- УПМ повреждают клетки и ткани организма хозяина эндотоксинами и ферментами агрессии (продуцируют гиалуронидазу, эластазу, коагулазу, фибринолизин, нейраминидазу, лецитиназу, нуклеазы).
- токсическим действием обладают продукты ферментативного распада -мочевина, сероводород.

УПМ

- характеризуются устойчивостью к антибиотикам, антисептикам, физическим факторам, бактериофагам.
- - обладают гетерогенностью антигенной структуры, которая создает сложности в
- идентификации выделенных культур.

Эпидемиология оппортунистических инфекций

- Источник инфекции больной человек или носитель, животные, объекты внешней среды.
- Наибольшую опасность в эпидемиологическом плане представляет медперсонал больничных учреждений, который может быть носителем госпитальных штаммов УПМ, например стафилококков.
- Пути передачи аэрогенный, контактный, трансмиссивный, алиментарный.

Оппортунистические инфекции:

- - развиваются на фоне снижения иммунного статуса организма: у онкологических больных, больных хроническими заболеваниями, лиц преклонного возраста, недоношенных младенцев, больных сердечно-сосудистыми заболеваниями, при сахарном диабете.
- - протекают в форме гнойно-воспалительных процессов различной локализации и степени
- тяжести.

- Так как УПМ являются преобладающими представителями нормальной микрофлоры организма человека, то подавляющее большинство оппортунистических инфекций носит эндогенный характер.
- УПМ приобретают способность преодолевать тканевые барьеры, в норме для них непреодолимые, и транслоцироваться во внутреннюю среду организма. Попадание УПМ во внутреннюю среду организма влечет колонизацию ими различных органов и систем организма, что клинически проявляется в виде гнойносептического процесса различной локализации и степени тяжести.

Особенности оппортунистических инфекций:

- 1. Возбудители не имеют органного тропизма: один и тот же микроорганизм может вызвать различные заболевания.
- 2. Полиэтиологичность заболевание
- может быть вызвано любым УПМ.
- 3. Клиническая картина определяется пораженным органом.

Особенности оппортунистических инфекций:

- 4. Часто протекают как смешанные инфекции.
- 5. Болезнь протекает медленно, имеет хроническое течение, развивается вторичный иммунодефицит.
- 6. Имеют тенденцию к генерализации процесса, развитию септикопиемии.
- 7. Трудности лечения обусловлены множественной антибиотикорезистентностью.

Микробиологическая диагностика

- 1. Микроскопический метод позволяет выявлять в мазках патологического материала бактерии только в случае их массивного содержания (10⁵КОЕ/мл и более).
- 2. Бактериологический метод основной.

Бактериологический метод

- Материал для исследования:
- 1. Материал берут из очага инфекции. Вид материала определяется клинической картиной заболевания.
- 2. Количество материала должно быть достаточным для проведения исследования.
- 3. Материал берут в начальном периоде болезни до начала антибактериальной терапии.

Этапы бактериологического исследования:

• 1. Готовят разведения патологического материала в растворе хлорида натрия и делают высев 0,1 мл материала из разведений на чашки Петри с питательной средой-газоном (на 3 чашки из каждого разведения).

В стандартный набор питательных сред включают: желточно-солевой агар (для стафилококков), среду Эндо (для энтеробактерий), кровяной агар (для стрептококков), среду Сабуро (для грибов), среду Китта-Тароцци (для анаэробов).

Этапы бактериологического исследования:

- 2. Описывают характер роста на питательных средах. Изучают морфологические, тинкториальные, культуральные признаки.
- Подсчитывают количество колоний каждого типа на чашках с посевом. Для расчета обсемененности материала используют формулу: (A) КОЕ = N x ПД x СР, где N —
- число колоний, ПД посевная доза, СР степень разведения.

Этапы бактериологического исследования:

- 3. Выделяют чистые культуры и проводят идентификацию по биохимическим и антигенным признакам.
- Определяют факторы патогенности и эпидемиологические маркеры (фаговары)
- Определяют антибиотикограмму.

Лечение

- Комплексное лечение включает адекватное хирургическое вмешательство, рациональную антимикробную терапию, иммунотерапию.
- Учитывая широкое распространение среди УПМ множественной лекарственной устойчивости к антибиотикам, назначать эти
- препараты больным необходимо с учетом результатов определения антибиотикограммы.

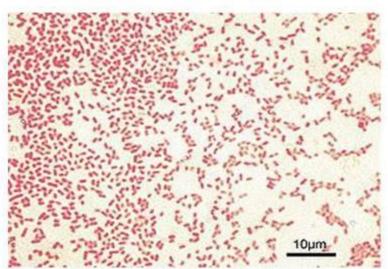
Профилактика

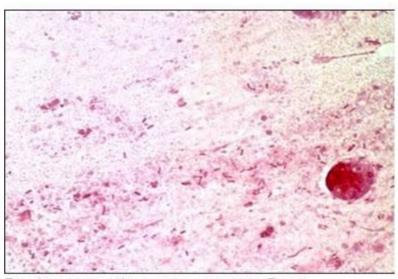
- Профилактика оппортунистических инфекций проводится в трех направлениях:
- 1. выявление источника инфекции;
- 2. разрыв механизмов, путей и факторов передачи, соблюдение санитарно-гигиенического режима, правил асептики, антисептики, дезинфекции и стерилизации;
- 3. воздействие на восприимчивый коллектив.

Профилактика

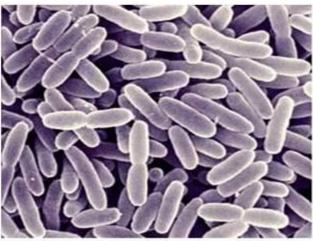
• Так как распространение госпитальных штаммов часто связано с носителями из числа медперсонала, необходимо выявлять и санировать этих носителей.

Синегнойная инфекция


- Семейство: Pseudomonaceae
- Род: **Pseudomonas**
- Вид: **Ps.aeruginosa**
- Описан А. Люкке в 1862г.
- Выделен в чистой культуре С. Жессаром в 1882г.


Ps.aeruginosa

- Грам «-» палочки, расположены попарно или короткими цепочками.
- Подвижны. Спор не образуют.
- Имеют пили IV типа.
- Образуют полисахаридную капсулу.


Синегнойная палочка

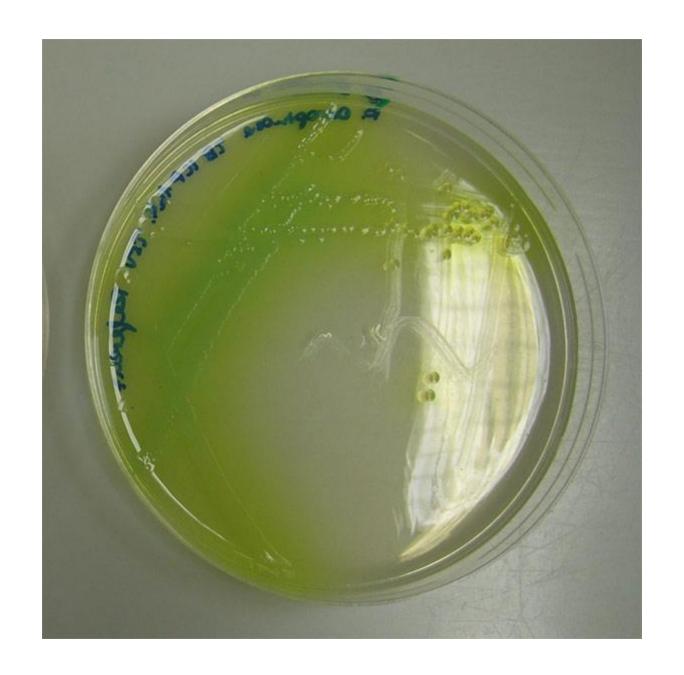
Pseudomonas aeruginosa, чистая культура, окраска по Граму.

Pseudomonas aeruginosa в гное, окраска по Граму.

Pseudomonas aeruginosa, электронная фотография.

- Облигатные аэробы.
- Хорошо размножаются на простых питательных средах, образуя гладкие слизистые колонии сине-зеленого цвета, с окрашиванием среды (пигмент пиоцианин)
- и запахом жасмина.
- На жидкой питательной среде образуют серебристого цвета пленку.
- Температура роста от 37 до 42 С.

Пигмент Pseudomonas aeruginosa


Культуральные свойства P.Aeruginosa

Рост колоний синегнойной палочки.

Pseudomonas aeruginosa, чистая культура.

- Не ферментирует углеводы.
- Ps.aeruginosa обладает способностью окислять глюкозу в аэробных условиях.
- Разжижает желатину.
- Имеет каталазу.
- Гидролизует казеин.
- Продуцирует бактериоцины.

Антигены Ps.aeruginosa

- ЛПС клеточной стенки является типоспецифическим **термостабильным О-антигеном**.
- Термолабильный жгутиковый Н-антиген.
- На поверхности клеток синегнойной палочки обнаружены **антигены пилей.**

Ps.aeruginosa Факторы патогенности:

- 1. Пили IV типа (адгезия и колонизация)
- 2. Экзотоксин A цитотоксические свойства, подавляет синтез белка в клетках и тканях, подавляет синтез иммуноглобулинов.
- 3. Экзотоксин S- подавляет фагоцитоз.
- 4. Лейкоцидин цитотоксин.

Ps.aeruginosa Факторы патогенности

- 5. Энтеротоксин.
- 6. Нейраминидаза.
- 7. Эластаза и экзотоксин А вызывают кровоизлияния, деструкцию тканей и некроз в очагах поражения.
- 8. Фосфолипаза разрушает фосфолипиды.

Ps.aeruginosa Резистентность

- Сохраняет жизнеспособность при полном отсутствии источников питания.
- Устойчива к дезинфицирующим растворам.
- Устойчива к антибиотикам.
- Хорошо сохраняется в морской, речной, дистиллированной воде.
- Чувствительна к высушиванию, высоким температурам, хлорсодержащим веществам.

Ps.aeruginosa Эпидемиология и патогенез

- Источники инфекции: больные люди, носители, объекты внешней среды.
- Пути заражения: контактный, аэрогенный, кровяной, алиментарный.
- Является возбудителем внутрибольничных инфекций.
- Вызывает гнойно-воспалительные заболевания различных органов и систем с летальностью до 50%.

- Проникает в организм через поврежденные ткани.
- Вызывает локальную и генерализованную (сепсис) инфекции.
- Раневые инфекции, ожоговая болезнь, менингиты, пневмония, инфекции мочевыводящих путей.

- Синегнойная палочка является возбудителем внутрибольничных (госпитальных) инфекций.
- Заражение синегнойной инфекцией в клинике связано с медицинскими манипуляциями (катетеризация мочевого пузыря, эндоскопическое исследование).

- Синегнойные палочки проникают в организм через поврежденные ткани.
- Прикрепляясь, они заселяют раневую или ожоговую поверхность, слизистые оболочки, кожу и размножаются.
- Бактериемия приводит к распространению возбудителя и развитию сепсиса, формированию вторичных гнойных очагов инфекции.
- Происходит нарушение функционирования органов и систем.

Ps.aeruginosa Микробиологическая диагностика

- Материал для исследования: кровь, раневое отделяемое, мокрота, моча.
- Основной метод Бактериологический.
- Серологический метод направлен на обнаружение специфических антител.

Ps.aeruginosa Лечение

- 1. Комбинация антибиотиков
- 2. Гипериммунная плазма
- 3. Антисинегнойный иммуноглобулин
- 4. Синегнойный бактериофаг
- ПРОФИЛАКТИКА:
- Поливалентная синегнойная корпускулярная вакцина

Внутрибольничный (нозокомиальный) сальмонеллез

- Этиология: Возбудителями внутрибольничного сальмонеллеза являются антибиотикорезистентные штаммы различных сероваров *S. enterica*:
- S.typhimutium, S.enteritidis, S.infants.
- Для них характерны наличие особой плазмиды и изменение биохимических свойств.

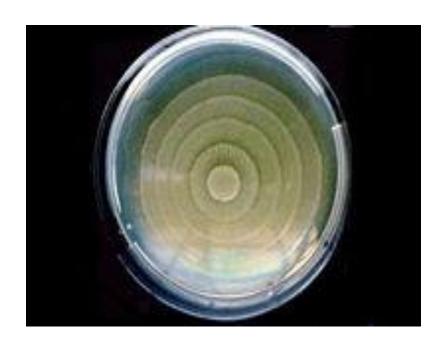
- Источником инфекции и основным резервуаром являются дети и взрослые, находящиеся в стационаре.
- В процесс вовлекаются дети в возрасте до І года, а также взрослые пациенты хирургических и реанимационных отделений, лица пожилого возраста.

 Передача сальмонелл при внутрибольничном сальмонеллезе осуществляется контактно-бытовым и алиментарным путями.

Клиническое течение

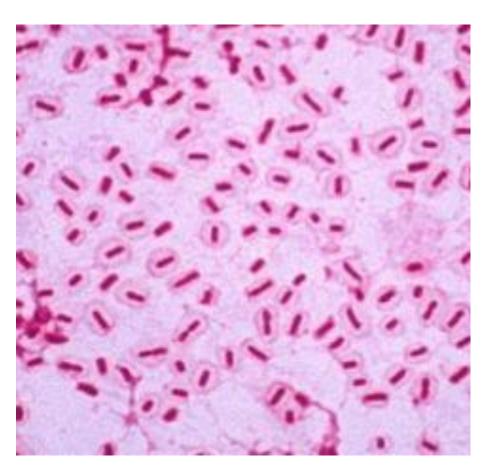
- Характеризуется длительным инкубационным периодом от 8 до 30 сут.
- Проявление болезни варьирует от бессимптомного носительства до выраженных кишечных расстройств с развитием системной инфекции, осложненной септикопиемией.
- Иммунитет не формируется.
- Профилактика осуществляется бактериофагом.
- Лечение: антибиотики.

- Название род получил в честь греческого бога Протея, способного принимать
- различные обличия.
- Виды: *P. vulgaris*


- Морфология.
- Грам «-» палочки располагаются попарно или цепочками, не образуют капсулу, подвижны.
- Культуральные свойства.
- Хорошо растут на обычных питательных средах. Образуют два типа колоний: отросчатые и крупные с ровными краями.

Proteus рост на питательной среде

Proteus рост на питательной среде


- Обладают выраженной биохимической активностью. Являются **гнилостными микроорганизмами**, способными
- окислять белки до а-кетокислот и аммиака.
- Основными биохимическими признаками являются:
- • расщепление мочевины;
- • продукция сероводорода;
- • отсутствие расщепления лактозы;
- • разжижение желатины.

- Антигенная структура: О- и Н-антигены.
- Резистентность:
- Устойчивы к воздействию факторов окружающей среды.
- Переносят нагревание до 60 °C 1 ч.
- Длительно сохраняются в растворах фенола и дезинфицирующих веществ.

- Вызывают **гнойно-септическую инфекцию, внутрибольничную** инфекцию.
- Наиболее часто протей вызывает инфекцию мочевыводящей системы.
- Микробиологическая диагностика. Используют бактериологический метод.
- Лечение: протейный бактериофаг и антибиотики.

Po∂ Klebsieilla

- Виды:
- K. pneumoniae,
- K. oxytica,
- K. granulomatis.
- Грам «-» палочки,
- неподвижны,
- имеют капсулу.

Klebsieilla, рост на питательной среде.

Klebsieilla

- Ферментируют лактозу Расщепляют мочевину
- **Антигены**: О, К.
- Факторы патогенности:
- Капсула- обеспечивает устойчивость к фагоцитозу.
- Пили IV типа адгезия.
- Энтеротоксин.
- Ферменты «агрессии»: нейраминидаза, ДНКаза, фосфатаза.

Клебсиеллы

- Являются одними из ведущих возбудителей внутрибольничных инфекций, которые протекают с поражением дыхательных и мочевыводящих путей, вызывают гнойные послеродовые осложнения и неонатальную инфекцию новорожденных, которая
- протекает в виде **пневмонии, кишечных расстройств и токсикосептических состояний**, заканчивающихся летально.

- *К. oxytica* является возбудителем внутри-
- больничных инфекций в урологических клиниках.
- Микробиологическая диагностика: бактериологический метод.
- Серологическая диагностика:
- РСК с О-антигенами.
- Лечение: клебсиеллезный бактериофаг,
- антибиотики.

СОСТАВИТЕЛИ:

Коллектив кафедры микробиологии, вирусологии и иммунологии имени академика А.А. Воробьева ИОЗ имени Ф.Ф. Эрисмана ФГАОУ ВО Первого МГМУ им. И.М. Сеченова Минздрава России

Под редакцией академика РАН, профессора В.В. Зверева

ИНДИВИДУАЛЬНАЯ КАРТА УЧЁТА РЕЙТИНГА УСПЕВАЕМОСТИ СТУДЕНТА В 202_ - 202_ Г.

килз	№ группы	ФИО	
	1 12 1 P., 1111D1	- 11	

морфология микробов					
Сведения об отработках:					
	Дата сдачи	Кол-во баллов	Подпись	преподавателя	
Зачет:					
ФИЗИОЛ	огия и генетик	А МИКРОБОВ. О	БЩАЯ ВИР	усология	
Сведения об отработках:					
	Дата сдачи	Кол-во баллов	Подпись преподавателя		
Зачет:					
УЧЕНИЕ	об инфекции. и	иммунология.	медицин	ІСКИЕ ИБП	
Сведения об отработках:					
	Дата сдачи	Кол-во баллов	Подпись преподавателя		
Зачет:					
	Тем	т а	Дата	Подпись преподавателя	
Доп. баллы				проподивителя	
	Дата сдачи	Цата сдачи Кол-во баллов		Подпись преподавателя	
Итог за 1 семестр					

ВОЗБУДИТЕЛИ БАКТЕРИАЛЬНЫХ КИШЕЧНЫХ ИНФЕКЦИЙ; БАКТЕРИИ - ВОЗБУДИТЕЛИ РЕСПИРАТОРНЫХ ИНФЕКЦИЙ						
Сведения об отработках:						
Зачет:	Дата сдачи Кол-во балло		Подпись преподавателя			
Su lei.						
ПАТОГЕННЬ	ІЕ КОККИ; ВОЗБУ Д	ДИТЕЛИ АНАЭРО	овных инф	ФЕКЦИЙ; ИСМП		
Сведения об отработках:						
Зачет:	Дата сдачи	Кол-во баллов	Подпись преподавателя			
зачет:						
ПАТО	ОГЕННЫЕ СПИРОХ ПАТО	ХЕТЫ, ХЛАМИДИ ОГЕННЫЕ ГРИБІ		лазмы;		
Сведения об						
отработках:						
n	Дата сдачи	Кол-во баллов	Подпись преподавателя			
Зачет:						
	ЧАСТНАЯ ВИРУСОЛОГИЯ					
Сведения об отработках:						
5	Дата сдачи	Кол-во баллов	Подпись преподавателя			
Зачет:						
	Тем	a	Дата	Подпись преподавателя		
Доп. баллы						
Итог за 2	Дата сдачи	Кол-во баллов	Подпись	преподавателя		
семестр						
		ЭКЗАМЕН				
Сумма баллов за год	Дата	Оценка	Подпись экзаменатора			

ПРАВИЛА РАБОТЫ В МИКРОБИОЛОГИЧЕСКОЙ ЛАБОРАТОРИИ

Работа в микробиологической лаборатории проводится с заразным материалом, что требует особой дисциплинированности и тщательности в работе. Поэтому студенты обязаны ознакомиться с правилами техники безопасности и строго их соблюдать:

НЕОБХОДИМО:

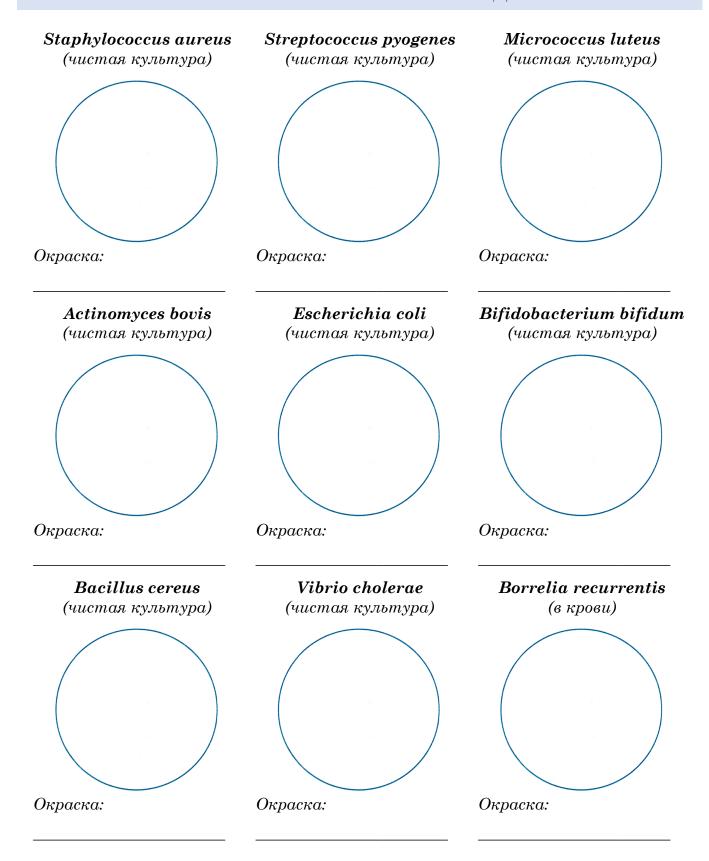
- верхнюю одежду оставлять в гардеробе; в лаборатории находиться в медицинских халатах и медицинских шапочках; при желании вы можете носить маску и перчатки;
- содержать лаборатории в чистоте и порядке; столы свободными от материалов, не относящихся непосредственно к работе;
- материал для работы принимается дежурным по группе у лаборанта кафедры и раздаётся студентам только с разрешения преподавателя;
- каждый вид деятельности осуществляется в определенной зоне: работа с микроорганизмами на специально оборудованном лабораторном столе, заполнение протоколов на рабочем столе;
- при попадании исследуемого материала на стол, пол и другие предметы немедленно сообщить преподавателю и произвести дезинфекцию;
- инфицированные материалы должны быть помещены в прочные непромокаемые контейнеры или контейнеры с дезинфицирующим раствором;
- во время проведения работы двери и окна лаборатории должны держаться закрытыми.

ЗАПРЕЩАЕТСЯ:

- принимать пищу в лаборатории;
- касаться руками исследуемого материала;
- зажигать одну спиртовку от другой; передавать, переносить или двигать по столу зажженную спиртовую горелку; оставлять спиртовку горящей после окончания использования по назначению;
- оставлять на рабочем месте нефиксированные препараты, открытые чашки Петри с посевами и другую посуду с инфекционным материалом.

ПО ОКОНЧАНИИ ПРАКТИЧЕСКОГО ЗАНЯТИЯ СТУДЕНТЫ ОБЯЗАНЫ:

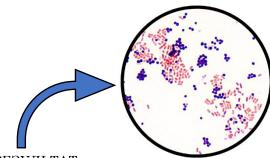
- привести в порядок своё рабочее место;
- сдать дежурному материалы, привести в порядок содержимое лотка с материалами к занятию;
- протереть салфеткой со спиртом объектив микроскопа от иммерсионного масла и сдать микроскоп дежурному;
- вымыть руки с мылом, а при необходимости обработать антисептиком;
- подписать у преподавателя рабочую тетрадь с оформленной работой.


С правилами работы ознакомлен(а). Обязуюсь выполнять.

Дата	Подпись студента

КУРС «ОБЩАЯ МИКРОБИОЛОГИЯ»

РАЗДЕЛ: «МОРФОЛОГИЯ МИКРОБОВ»

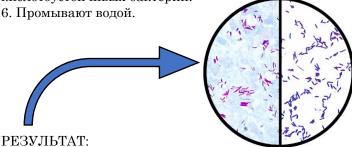

МОРФОЛОГИЯ БАКТЕРИЙ. ПРОСТЫЕ МЕТОДЫ ОКРАСКИ

МОРФОЛОГИЯ БАКТЕРИЙ. СЛОЖНЫЕ МЕТОДЫ ОКРАСКИ

Окраска по Граму (для дифференцировки клеточной стенки)

- 1. На фиксированный мазок положить сухую полоску фильтровальной бумаги, ранее пропитанной анилиновым красителем генциан-фиолетовым (по Синеву), нанести на нее 2-3 капли воды и выдержать 2 минуты.
- 2. Снять бумажку пинцетом и, не промывая водой, нанести на мазок раствор Люголя (содержит йод) на 1 минуту. Мазок при этом чернеет.
- 3. Слить раствор Люголя и обесцвечивать 95% этиловым спиртом, погружая стекло в стаканчик со спиртом в течение 30-40 секунд до прекращения отхождения фиолетовых струек красителя.
- 4. Тщательно промыть мазок водой для удаления спирта.
- 5. Для окраски грамотрицательных бактерий нанести на мазок водный фуксин на **1-2 минуты**.
- 6. Слить краску, промыть мазок водой и высушить фильтровальной бумагой.

РЕЗУЛЬТАТ:

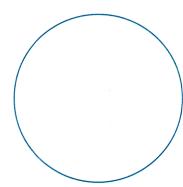

грамположительные бактерии окрашиваются в фиолетовый цвет, грамотрицательные - в красный.

Окраска по Цилю-Нильсену (для определения кислотоустойчивости)

- 1. На фиксированный мазок кладут кусочек фильтровальной бумаги (по размеру мазка), наливают карболовый фуксин Циля и, держа стекло пинцетом, подогревают над пламенем спиртовки (но не в пламени!) до появления паров. При подсыхании красителя вследствие его испарения осторожно доливают карболовый фуксин на полоску фильтровальной бумаги. Так повторяют 2-3 раза, каждый раз отставляя стекло в сторону для охлаждения (наблюдать за появлением паров лучше, глядя на мазок сбоку).
- 2. Снимают бумажку пинцетом. Дают препарату остыть и промывают водой.

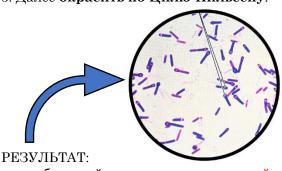
Внимание! Горячее предметное стекло не промывают водой, т.к. оно может разбиться.

- 3. Обесцвечивают мазок 5% серной кислотой, погружая в стаканчик с кислотой 3-5 раз, не задерживая в кислоте. Обесцвечивание кислотой должно быть полное, т.е. мазок становится бесцветным, почти таким, каким был до окрашивания карболовым фуксином.
- 4. Мазок тщательно промывают водой, чтобы прекратилось обесцвечивание.
- 5. Окрашивают препарат метиленовым синим 5 -7 минут. Мазок становится интенсивно голубым. При микроскопии голубой фон облегчает обнаружение кислотоустойчивых бактерий.


кислотоустойчивые бактерии окрашиваются в красный цвет, некислотоустойчивые - в синий.

S. aureus u E. coli

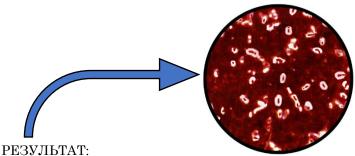
B. cereus u E. coli


Mycobacterium tuberculosis

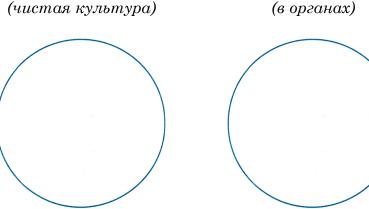
(в срезе легкого)

Окраска:

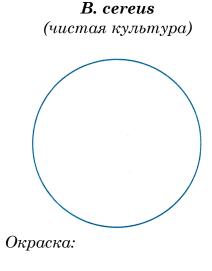
Окраска по методу Ауески (для выявления спор бактерий)


- 1. На нефиксированный мазок нанести 0,5% раствор соляной кислоты и подогреть над пламенем 2-3 минуты.
- 2. Кислоту слить, препарат промыть водой, просушить и фиксировать в пламени спиртовки.
- 3. Далее окрасить по Цилю-Нильсену.

споры бактерий окрашиваются в красный цвет, вегетативные клетки – в синий.

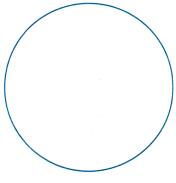

Окраска по Бурри-Гинсу (для выявления капсул бактерий)

- 1. Смешать каплю взвеси чистой культуры бактерий с каплей туши и при помощи другого предметного стекла сделать мазок, высушить и фиксировать над племенем.
- 2. Нанести карболовый раствор фуксина (1:3) на 1-2 минуты.
- 3. Промыть водой, высушить, микроскопировать.



бактерии окрашиваются в красный цвет, фон – в темный, а клетки бактерий окружены бесцветным «ореолом» капсулой.

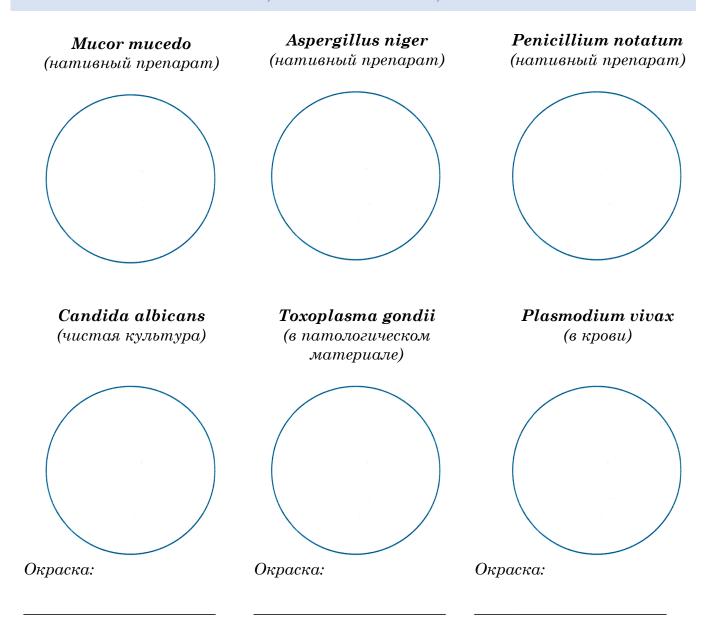
Klebsiella pneumoniae Streptococcus pneumoniae (чистая культура)



Окраска:

Corynebacteriumdiphtheriae

(чистая культура)

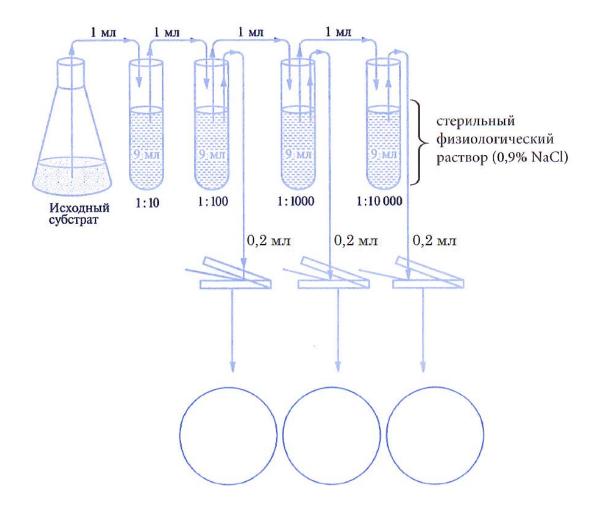


Окраска:

Окраска:

(Подпись преподавателя)

МОРФОЛОГИЯ ГРИБОВ, ПРОСТЕЙШИХ, ВИРУСОВ



Примечание: нативный препарат – неокрашенный препарат (om англ. «native» - родной)

РАЗДЕЛ: «ФИЗИОЛОГИЯ МИКРОБОВ»

БАКТЕРИОЛОГИЧЕСКИЙ МЕТОД ДИАГНОСТИКИ (НАЧАЛО). ВЫДЕЛЕНИЕ ЧИСТЫХ КУЛЬТУР БАКТЕРИЙ. ДЕЗИНФЕКЦИЯ. АНТИСЕПТИКА

ПОДСЧЕТ КОЛИЧЕСТВА МИКРООРГАНИЗМОВ В ИССЛЕДУЕМОМ МАТЕРИАЛЕ МЕТОДОМ СЕРИЙНЫХ РАЗВЕДЕНИЙ ПО КОХУ

Разведение	Количество колоний на чашке
10·	
10·	
10·	
Расчет:	
Вывод:	
Количество микроорга	низмов в исследуемом материале:
x =KOE/m	л

МЕТОД ФОРТНЕРА (СДЕЛАЙТЕ ВЫВОД):
·

ДЕЙСТВИЕ ТЕМПЕРАТУРЫ НА СПОРООБРАЗУЮЩИЕ И НЕСПОРООБРАЗУЮЩИЕ БАКТЕРИИ

	КИПЯЧЕНИЕ 5 МИН (100°C)	АВТОКЛАВИРОВАНИЕ (120°С 15 МИН)
Bacillus cereus		
Escherichia coli		
Вывод:		

ЭКСПЕРИМЕНТЫ ПО ДЕЗИНФЕКЦИИ/АНТИСЕПТИКЕ:

	СПИРТ ЭТИЛОВЫЙ 700	АВАНСЕПТ	10% ХЛОРАМИН
Поверхность стола			
Руки			
Вывод:			

ДЕЙСТВИЕ АНТИСЕПТИКОВ НА БАКТЕРИИ

АНТИСЕПТИК	хлоргексидин	ПЕРЕКИСЬ ВОДОРОДА 3%	
Staphylococcus aureus			
Escherichia coli			
Вывод:			

БАКТЕРИОЛОГИЧЕСКИЙ МЕТОД ДИАГНОСТИКИ

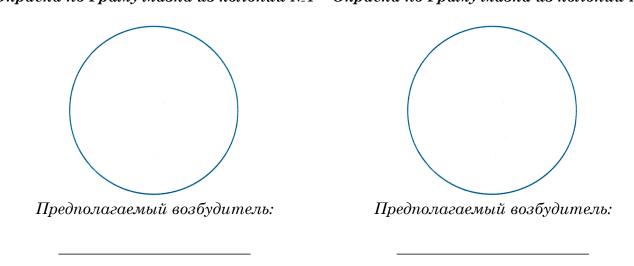
ВЫДЕЛЕНИЕ И ИДЕНТИФИКАЦИЯ ЧИСТЫХ КУЛЬТУР БАКТЕРИЙ (бактериологический метод исследования).

<u>1 ЭТАП:</u> Посев исследуемого материала на чашки Петри с плотной питательной средой (МПА) методом штриха.

Инкубация при 37°C в течение 24 часов.

<u>Примечание 1:</u> в том случае, если в исследуемом материале содержится незначительное количество возбудителя (например, в крови), то его предварительно накапливают путем посева материала в среду обогащения, а затем после инкубации (как правило, при 37° C в течение 18-24 часов) производят пересев на плотную среду.

<u>Примечание 2:</u> выделение и идентификация чистой культуры анаэробов производится в анаэробных условиях.


- <u>2 ЭТАП:</u> Идентификация выделенной чистой культуры (чистых культур) по культуральным, морфологическим и тинкториальным свойствам. Для этого проводят:
- а) макро- и микроскопическое исследование колоний, выросших на плотной питательной среде (культуральные свойства);
- б) приготовление мазка из половины колонии каждого вида и окраску препарата по Граму (морфологические и тинкториальные свойства);

в) пересев оставшейся части колонии на скошенный агар для накопления выделенной чистой культуры. **Инкубация** при 37^{0} С в течение 24 часов.

СХЕМА ОПИСАНИЯ КОЛОНИЙ

Nº	Рисунок	Размер	Форма	Цвет	Поверхность	Края	Консистенция	Структура
1								
2								

Окраска по Граму мазка из колонии №1 Окраска по Граму мазка из колонии №2

3 ЭТАП:

А. Идентификация выделенной чистой культуры бактерий по биохимическим, антигенным и др. свойствам.

Для этого производят следующие исследования:

- а) изучение однородности роста на скошенном МПА;
- б) приготовление, окраска мазка по Граму (или фуксином) и микроскопия для проверки чистоты выделенной на скошенном МПА культуры;
- в) изучение **биохимической активности** бактерий: посев выделенной чистой культуры на **среды Гисса** (для определения сахаролитической активности), желатин и МПБ с индикаторными бумажками **на индол, аммиак и сероводород** (для выявления протеолитической активности).

Инкубация при 37^оС в течение 24 часов.

<u>Примечание 1:</u> изучение биохимических свойств проводят только при работе с чистой культурой бактерий. При этом определяют свойства каждого выделенного микроорганизма в отдельности. Если при микроскопии мазка из материала со скошенного МПА обнаруживается смесь бактерий, то процедуру выделения чистой культуры бактерий необходимо повторить.

<u>Примечание 2:</u> для адекватной оценки биохимической активности бактерий необходимо исследовать не менее 15-20 тестов!

ФЕРМЕНТАТИВНЫЕ СВОЙСТВА БАКТЕРИЙ

Предполагаемый	САХАРОЛИТИЧЕСКИЕ СВОЙСТВА						ПРОТЕОЛИТИЧЕСКИЕ СВОЙСТВА	
возбудитель	Лактоза	Глюкоза	Мальтоза	Маннит	Сахароза	Индол	Сероводород	

- г) изучение **антигенных свойств** выделенных бактерий (будет проводиться в разделе: "ИНФЕКЦИЯ И ИММУНИТЕТ").
- **Б. Определение чувствительности бактерий к антибиотикам** методом дисков. **Инкубация** при 37°C в течение 24ч.

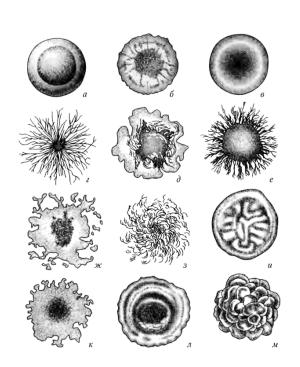
ОПРЕДЕЛЕНИЕ ЧУВСТВИТЕЛЬНОСТИ БАКТЕРИЙ К АНТИБИОТИКАМ МЕТОДОМ ДИСКОВ

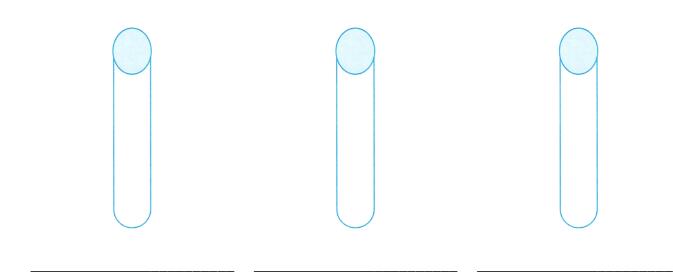
ſ	Вид	Антибиотик, диаметр зоны задержки роста, мм					
	бактерий						
ŀ							

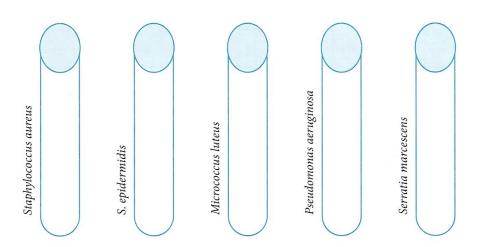
В. Внутривидовая идентификация выделенной чистой культуры бактерий (эпидемиологическое маркирование).

Проводится часто с целью определения источника инфекции. С этой целью применяют фаготипирование, рестрикционный анализ, определение плазмидного профиля бактерий и др.

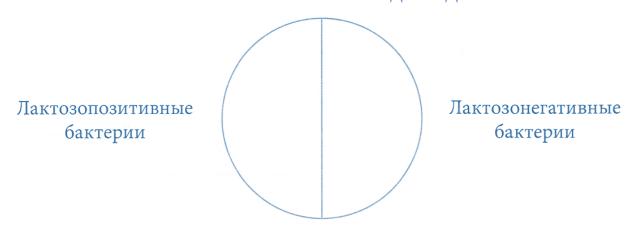
4	ЭТ	AΤ	[·]	У иет	nesv	пьтя	атов

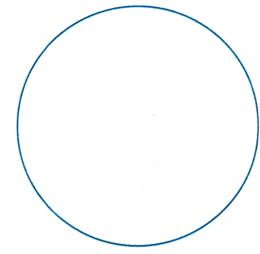

ных из исследуемого материала, можно сделать
и виду
чувствительны к
и́чивы к
чувствительны к
йчивы к


БАКТЕРИОЛОГИЧЕСКИЙ МЕТОД ДИАГНОСТИКИ. ИДЕНТИФИКАЦИЯ ПО КУЛЬТУРАЛЬНЫМ, МОРФОЛОГИЧЕСКИМ И ТИНКТОРИАЛЬНЫМ СВОЙСТВАМ. МИКРОБИОТА ОРГАНИЗМА ЧЕЛОВЕКА. МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ И ВОЗДУХА


ФОРМЫ КОЛОНИЙ:

- a круглая;
- **б** круглая с фестончатым краем;
- **в** круглая с валиком по краю;
- \mathbf{z} и $\mathbf{\partial}$ ризоидные;
- e с ризоидным краем;
- **ж** амебовидная;
- **3** нитевидная;
- u складчатая;
- κ неправильная;
- n концентрическая;
- M сложная

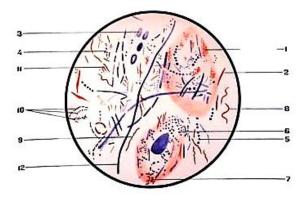



пигменты бактерий

РОСТ БАКТЕРИЙ НА СРЕДЕ ЭНДО

В мазке обнаружены:

Окраска:


1.	
2.	
3.	
4	
4.	

6. _____

5. _____

- 7. _____
- 8. _____
- 9. _____
- 10. _____
- 11. _____
- 12. _____

В мазке могу быть обнаружены:

- 1. Вейлонеллы
- 2. Фузиформные бактерии
- 3. Кандиды
- 4. Микрококки
- 5. Стрептококки
- 6. Стафилококки
- 7. Вибрионы
- 8. Спириллы
- 9. Спирохеты
- 10. Лактобактерии
- 11. Бактероиды
- 12. Лептотрихии

СХЕМА ОПРЕДЕЛЕНИЯ МИКРОБНОГО ЧИСЛА ВОДЫ

1:10	1:100	1:1000
й воды	КОЕ/мл.	

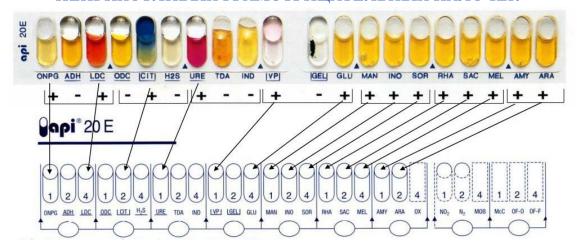
СХЕМА МИКРОБИОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ ВОЗДУХА

Метод исследования	Место отбора проб	Время экспозиции	Объём исследуемой пробы воздуха	Описание колоний
Седиментационный (по Коху)		5 мин	10 л	
Посев на МПА		5 мин	10 л	
Аспирационный (аппарат Кротова или ПУ-2) Посев на МПА, кровяной агар		Устанавливается автоматически	100 л	

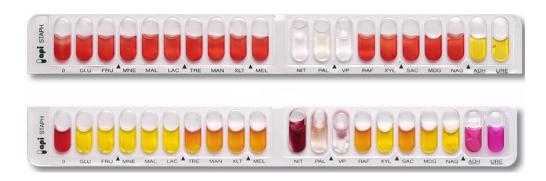
количество бактерий (определено методом Коха) - количество бактерий (определено аспирационным методом) - количество грибов (определено обоими методами) -

Заключение*: микробное число исследуемого воздуха _ количество	КОЕ/м³, где
бактерий КОЕ/м ³ ; количество грибов	_ КОЕ/м³

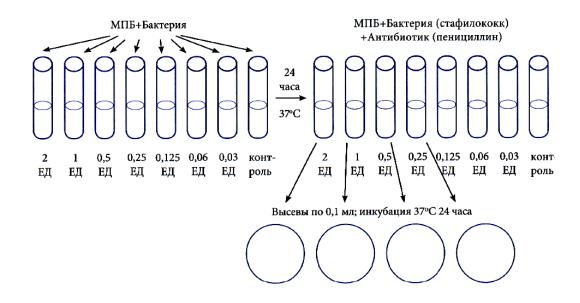
(Подпись преподавателя)


^{*}Допустимо: ОМЧ для бактерий менее 1500 КОЕ/м3, для грибов - не более 20 КОЕ/м3.

БАКТЕРИОЛОГИЧЕСКИЙ МЕТОД ДИАГНОСТИКИ (ОКОНЧАНИЕ). ИДЕНТИФИКАЦИЯ БАКТЕРИЙ ПО БИОХИМИЧЕСКИМ СВОЙСТВАМ. ОПРЕДЕЛЕНИЧЕ ЧУВСТВИТЕЛЬНОСТИ БАКТЕРИЙ К ПРОТИВОМИКРОБНЫМ ПРЕПАРАТАМ


БИОХИМИЧЕСКИЕ СВОЙСТВА БАКТЕРИЙ

	CAXAP PO	ОЛИТИЧЕ СТ НА СРЕ	ССКИЕ СВО ЕДАХ ГИСС	ЙСТВА, А С:	ПРОТЕОЛИ СВОЙ	ТИЧЕСКИЕ ИСТВА
	глюкозой	лактозой	маннитом	сахарозой	индол	сероводород
Незасеянные пробирки						
Чистая культура 1						
Чистая культура 2						


АРІ 20 Е - НАБОР ДЛЯ ИДЕНТИФИКАЦИИ ENTEROBACTERIACEAE И ДРУГИХ НЕПРИХОТЛИВЫХ ГРАМОТРИЦАТЕЛЬНЫХ ПАЛОЧЕК

АРІ STAPH - НАБОР ДЛЯ ИДЕНТИФИКАЦИИ СТАФИЛОКОККОВ, МИКРОКОККОВ И РОДСТВЕННЫХ МИКРООРГАНИЗМОВ

МЕТОД СЕРИЙНЫХ РАЗВЕДЕНИЙ



ОПРЕДЕЛЕНИЕ ЧУВСТВИТЕЛЬНОСТИ БАКТЕРИЙ К АНТИБИОТИКАМ МЕТОДОМ СЕРИЙНЫХ РАЗВЕДЕНИЙ

Ингредиенты	1	2	3	4	5	6	7	8
Пперсоистион								контроль
МПБ, в мл	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Пенициллин, ЕД/мл	2	1	0,5	0,25	0,125	0,06	0,03	
Стафилококк	по одной "петле"							
Результаты								
(рост/отсутствие роста):								
ЗАКЛЮЧЕНИЕ: минимальная ингибирующая концентрация (МИК) пенициллина ЕД/мл								

ОПРЕДЕЛЕНИЯ ЧУВСТВИТЕЛЬНОСТИ БАКТЕРИЙ К АНТИБИОТИКАМ МЕТОДОМ ДИСКОВ

Нарисуйте результаты демонстрации по определению чувствительности бактерий к антибиотикам методом дисков:

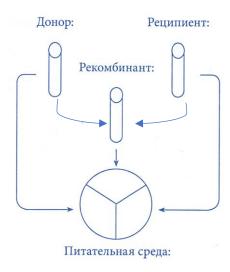
ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ ОПРЕДЕЛЕНИЯ ЧУВСТВИТЕЛЬНОСТИ БАКТЕРИЙ К АНТИБИОТИКАМ МЕТОДОМ ДИСКОВ

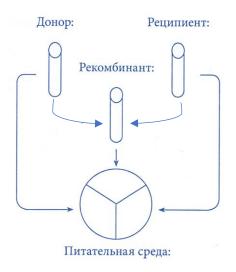
	Д	Диаметр зоны задержки роста, мм					
АНТИБИОТИК	Staphyloco	ccus aureus	Escheric	chia coli			
	S	R	S	R			
Азитромицин	чувствительност эритрог	·	_	_			
Амоксициллин	_	_	чувствительность оценивается по ампициллину				
Ампициллин	_	_	≥ 14	< 14			
Бензилпенициллин	≥ 26*	< 26*	_	_			
Ванкомицин	используют дру определения чу		_	_			
Гентамицин	≥ 18	< 18	≥ 17	< 14			
Доксициклин	чувствительност тетраці		≥ 14	< 11			
Имипенем	чувствительность оценивается п		≥ 22	< 16			
Карбелициллин	_		≥ 19	< 15			
Левофлоксацин	≥ 22	< 22	≥ 23	< 19			
Меропенем	чувствительность оценивается п	=	≥ 22	< 16			
Оксациллин	_	_	_	_			
Рифампицин	≥ 26	< 23	_	_			
Тетрациклин	≥ 22	< 19	≥15	<12			
Хлорамфеникол (левомицетин)	≥ 18	< 18	≥ 17	< 17			
Цефалексин	чувствительност	ь оценивается по	≥ 14	< 14			
Цефтриаксон		ситину	≥ 25	< 22			
Цефокситин	≥ 22	< 22	≥ 19	< 19			
Ципрофлоксацин	≥ 21	< 21	≥ 26	< 24			
Эритромицин	≥ 21	< 18	_	_			

^{*} Большинство стафилококков продуцируют пенициллиназу, тест используется для определения ее наличия.

α	/1 1	· \
5	suscentible	чувствительный)
\sim	(Select person)	1, BUIBILI CUBILDIII,

(Подпись преподавателя)

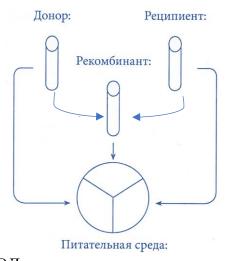

I (intermediate, мало устойчивый);

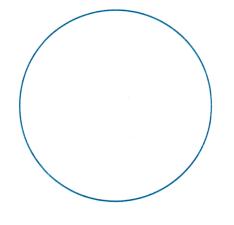

 $[{]f R}$ (resistant, устойчивый).

ГЕНЕТИКА БАКТЕРИЙ. ФАГОТИПИРОВАНИЕ

ОПЫТ ПО ТРАНСДУКЦИИ

ОПЫТ ПО ТРАНСФОРМАЦИИ

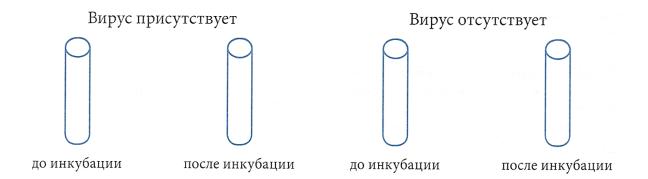




ВЫВОД:	ВЫВОД:

ОПЫТ ПО КОНЪЮГАЦИИ

ФАГОТИПИРОВАНИЕ СТАФИЛОКОККОВ



ВЫВОД:	ВЫВОД:

Культура клеток muna HeLa	куриных фибробластов
ЦПД вирусов: гибель и деструкция монослоя	ЦПД вирусов: цитоплазматические включения
ЦПД вирусов: внутриядерные включения	Тельца Бабеша-Негри в культуре клеток
Перечислите другие виды ЦПД:	

Культура клеток

ЦВЕТНАЯ ПРОБА:

ФЕНОМЕН ГЕМАДСОРБЦИИ:	
Принцип метода:	
принцип метода.	
ОБРАЗОВАНИЕ БЛЯШЕК ПОД АГАРОМ:	
Принцип метода:	
	Assessed to the second
	Carried Annual Control of the Contro

РЕАКЦИЯ ГЕМАГГЛЮТИНАЦИИ (РГА) ДЛЯ ИНДИКАЦИИ ВИРУСА В АЛЛАНТОИСНОЙ ЖИДКОСТИ КУРИНОГО ЭМБРИОНА

Ингредиенты	P	азведен	Контроль				
•	1:2	1:4	1:8	1:16	1:32	эритроцитов	
Изотонический р-р							
хлорида натрия, мл	0,5	0,5	0,5	0,5	0,5	0,5	
Аллантоисная							
жидкость (вируссодержащий		1	1	1			
материал), мл	0,5	0,5	0,5	0,5	0,5 слить		
1% суспензия							
эритроцитов, мл	0,5	0,5	0,5	0,5	$0,\!5$	0,5	
Перемешат	ь, инку	бировап	<i>в при к</i>	омнатн	юй темпераг	nype	
		в течен	ue 30- 60	Эмин.			
Результаты:							
ВЫВОДЫ: РГА поло	ВЫВОДЫ: РГА положительная/отрицательная.						
В алланто	В аллантоисной жидкости обнаружен/не обнаружен вирус,						
обладающий гемагглютинирующей способностью.							
Титр вируса							

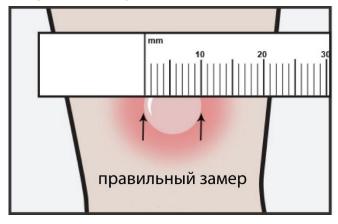
РАЗДЕЛ: «УЧЕНИЕ ОБ ИНФЕКЦИИ И ИММУНИТЕТЕ»

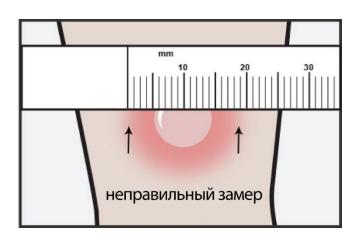
ИНФЕКЦИЯ. ФАКТОРЫ ПАТОГЕННОСТИ

Streptococcus pneumoniae (в органах)	Фагоцитоз Staphylococcus aureus	Neisseria gonorrhoeae в гное (незавершенный фагоцитоз		
Окраска:	Окраска:	Окраска:		
Плазмокоагулаза	Рост на 5% кровяном агаре	Рост на ЖСА (лецитовителлаза)		
α -гемолиз –				
β -гемолиз –				
ү- гемолиз –				

МЕХАНИЗМЫ И ПУТИ ПЕРЕДАЧИ ИНФЕКЦИОННЫХ ЗАБОЛЕВАНИЙ

			*		
заражения	7 -	пути передачи инфекции	Факторы передачи инфекции	рходные ворота инфекции	т рушна инфекционных заболеваний
		Пищевой (алиментарный)	Контаминированные пищевые продукты		
Фекально-оральный	ьный	Водный	Инфицированная вода	Рот, желудочно-	Кишечные инфекции
		Контактно-бытовой	Грязные руки, контаминированная посуда, насекомые-переносчики (мухи, тараканы)	лишечный гракт	
	:	Воздушно-капельный (диаметр частиц от 10 до 100 мкм)	Капли слизи из зева при кашле, чихании, разговоре, шепоте, дыхании, пении, поцелуе	Спизистые обопочки	Респираторные инфекции
Аэрогенный	Z	Воздушно-пылевой	Частицы пыли, несущие на себе микробы	дыхательных путей	(инфекции дыхательных
		<i>Аэрозольный</i> (диаметр частиц до 10 мкм)	Пылевой или водный аэрозоль		путеи)
	йог	Трансфузионный	Переливание зараженной крови, плазмы		
	vrq	Трансплацентарный*	Через плаценту от матери к плоду		
	ĮΠ	Половой	При микроповреждениях с выделением крови		
Кровяной 5.2	ЙC	Трансмиссивный	Через укусы кровососущих насекомых	Кровь	Кровяные инфекции
	омвадпэН	Артифициальный	Через нестерильные медицинские инструменты (иглы, шприцы и пр.) и средства личной гигиены (зубная щетка, "опасная" бритва) с остатками крови на них		
	йомво	Контактный раневой	Укус животного, травма, все виды оружия, контаминированные медицинская аппаратура, шовный и перевязочный материал	Кожа, слизистые	Контактные (раневые) инфекции
L'ours ourse s'	<u>І</u> Ш	Половой	Половой контакт	оболочки мочевыделительной и	Сексуально-трансмиссивные инфекции
	йомкфпэН	Контактно-бытовой	Контаминированные руки (при рукопожатии, дотрагивании и т.п.), поцелуй, контаминированные предметы (посуда, мочалка, предметы личной гигиены)	половой систем, конъюнктива глаз, волосы, ногти	Контактные инфекции
		Трансплацентарный	Через плаценту от матери к плоду (антенатальное инфицирование)	Кровь	Кровяные («врожденные») инфекции
Вертикальный		Контактный	При прохождении через инфицированные родовые пути матери, грудное вскармливание (интранатальное и постнатальное инфицирование)	Рот, ЖКТ, кожа и слизистые новорожденного	Контактные инфекции
*См. также «ве	ертик	*См. также «вертикальный механизм заражения»	<i>гражения</i> »		


27


ОСНОВЫ АЛЛЕРГОЛОГИИ

НАКОЖНЫЕ ИССЛЕДОВАНИЯ РЕАКЦИИ НА АЛЛЕРГЕНЫ

ПРОБА МАНТУ

ЗАКЛЮЧЕНИЕ: _	 	

(Подпись преподавателя)

ИММУНОДИАГНОСТИЧЕСКИЕ РЕАКЦИИ

МИБП ДЛЯ ДИАГНОСТИКИ

ДИАГНОСТИКУМЫ (АГ):

I. <u>Бактериальные</u>

Пример: Бактериальный диагностикум сальмонелл брюшного тифа.

II. <u>Эритроцитарный</u>

Пример: Эритроцитарный Vi-диагностикум.

III. Вирусный

Пример: Диагностикум гриппозный сухой.

ДИАГНОСТИЧЕСКИЕ АТ-ПРЕПАРАТЫ:

І. Диагностические иммунные сыворотки

Агглютинирующие адсорбированные и неадсорбированные; Преципитирующие; Гемолитические и др.

Пример: Адсорбированная поливалентная агглютинирующая сальмонеллезная сыворотка групп АВСДЕ.

II. <u>Эритроцитарные АТ-диагностикумы</u>

Примеры: Дизентерийные эритроцитарные диагностикумы; Эритроцитарный брюшнотифозный диагностикум.

III. Моноклональные AT

IV. <u>AT, меченые флюорохромами, ферментами, изотопами</u>

Примеры: Антитела, меченные флуоресцеином изотиоцианатом (ФИТЦ), или другим флюорохромом для прямого метода Кунса (РИФ); Препараты пероксидазных конъюгатов антител для выявления антигенов стафилококков, пневмококков, возбудителей чумы, туберкулеза, легионеллеза, гриппа, парагриппа, аденовирусной инфекции и др.; Сыворотки меченые радиоизотопами для постановки РИА.

V. Антиглобулиновые сыворотки

Пример: Антиглобулиновая сыворотка для реакции Кумбса.

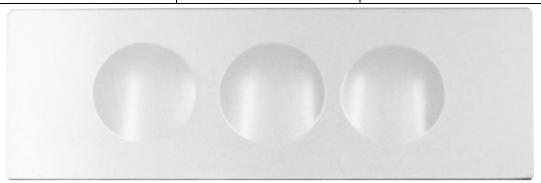
ДРУГИЕ КОМПОНЕНТЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ ИММУНОДИАГНОСТИЧЕСКИХ РЕАКЦИЙ:

- І. Комплемент
- II. Эритроциты
- III. Гемолитическая система и др.

БАКТЕРИОФАГИ

Примеры: Стафилококковые типовые, Брюшнотифозные типовые, Холерные типовые:

АЛЛЕРГЕНЫ


Примеры: Туберкулин, Бруцеллин, Тулярин, Антраксин.

РАЗВЕРНУТАЯ РЕАКЦИЯ АГГЛЮТИНАЦИИ С СЫВОРОТКОЙ БОЛЬНОГО ДЛЯ ОПРЕДЕЛЕНИЯ ТИТРА АНТИТЕЛ

		Пробирки							
Ингредиенты	$oxed{1}$ $oxed{2}$ $oxed{3}$		4 5		Контроль	Контроль			
	1	2	3	4	Э	сыворотки	антигена		
Изотонический р-р, мл	1,0	1,0	1,0	1,0	1,0	_	1,0		
Сыворотка больного в									
исходном разведении						1,0	_		
1:25, мл	1,0	1,0	1,0	1,0	1,0 слить				
Разведения	1:50	1:100	1:200	1:400	1:800	1:25			
сыворотки	1.50	1:100	1:200	1.400	1:000	1.20			
Первый ряд пробирок:									
О-диагностикум	3	3	3	3	3		3		
(в каплях)									
Второй ряд пробирок:									
Н-диагностикум	3	3	3	3	3		3		
(в каплях)									
Термостат при 37°C в течение 2 ч., затем при комнатной температуре 24 ч.									
Результат:									
О-агглютинация									
Результат:									
Н-агглютинация						_			
ВЫВОДЫ: Реакция агт	лютина	ации по	ложите	льная/о	трицательная	Ι.			
Титр антите	л к О-ан	нтигену		Тит	гр антител к Н	І-антигену			

РЕАКЦИЯ АГГЛЮТИНАЦИИ НА СТЕКЛЕ С АДСОРБИРОВАННЫМИ СЫВОРОТКАМИ

Сыворотка 1	Сыворотка 2	Контроль:
		ЧИСТАЯ КУЛЬТУРА
+	+	+
ЧИСТАЯ КУЛЬТУРА	ЧИСТАЯ КУЛЬТУРА	физ. р-р

ВЫВОД: _			
, ,			

РЕАКЦИЯ ПАССИВНОЙ (НЕПРЯМОЙ) ГЕМАГГЛЮТИНАЦИИ

	Пробирки										
Ингредиенты	1	2	3	4	5	Контроль	Контроль				
	1		3	4	9	сыворотки	антигена				
Изотонический р-р, мл	0,25	0,25	0,25	0,25	0,25	0,25	0,25				
Сыворотка больного в											
исходном разведении						0,25					
1:25, мл	$0,\!\overline{2}5$	$0,\!25$	$0,\!25$	$0,\!25$	0,25 слить						
Разведения	1:10	1:20	1:40	1:80	1:160	1:10					
сыворотки	1:10	1:20	1.40	1.00	1:100	1.10					
Эритроцитарный	0,25	0,25	0,25	0,25	0,25		0,25				
диагностикум, мл	0,20	0,20	0,20	0,20	0,20	_	0,20				
Инкубация при	комно	атной	темпе	pamyp	е в течение 🤅	30-60 мину	rm				
Результат (рисунок):											
Результат (+/-)											
ВЫВОДЫ: Реакция пас	сивной	гемагг	лютина	ции пол	пожительная/	отрицатель	ная.				
Титр антите	л в иссл	іедуемо	й сывор	отке пр	отив данного	антигена _	•				

РЕАКЦИЯ КОЛЬЦЕПРЕЦИПИТАЦИИ С БАКТЕРИАЛЬНЫМ ГАПТЕНОМ

Ингредиенты	Неизвестный гаптен
Преципитирующая сыворотка против <i>B.cereus</i>	
Преципитирующая сыворотка против <i>E.coli</i>	
ВЫВОД: Неизвестный гаптен выделен из	

РЕАКЦИЯ КОЛЬЦЕПРЕЦИПИТАЦИИ ДЛЯ ОПРЕДЕЛЕНИЯ НЕИЗВЕСТНОГО БЕЛКА

Ингредиенты	Неизвестный белок
Преципитирующая сыворотка против белка	
человека	
Преципитирующая сыворотка против белка	
курицы	
ВЫВОД: Неизвестный белок принадлежит	

РЕАКЦИЯ ИММУННОГО ГЕМОЛИЗА

			Конт	роль				
Ингредиенты	Опыт 1	2	3	4	5			
Гемолитическая сыворотка кролика,								
содержащая антитела к эритроцитам	0,5	0,5		0,5				
барана, мл								
Эритроциты барана, мл	0,5	0,5	0,5		0,5			
Комплемент в разведении 1:10, мл	0,5		0,5	0,5				
Эритроциты собаки, мл	_	_		0,5				
Физиологический раствор, мл	_	0,5	0,5		1,0			
Общий объём, мл	1,5	1,5	1,5	1,5	1,5			
Инкубация при 37°C в течение 45-60 минут								
Результат								
(гемолиз / отсутствие гемолиза):								
ВЫВОДЫ: Реакция иммунного гемол	иза полож	кительна	ая/отриц	ательная	я, т.к.			

РЕАКШИЯ ТИТРОВАНИЯ КОМПЛЕМЕНТА

					Пр	обир	ки		
Ингредиенты					_		_	Контроль компл.	Контроль гем. сист.
	1	2	3	4	5	6	7	8	9
Комплемент									
разведения 1:10,	0.9	0.05	0.9	0.25	0.4	0.45	0 5	0.5	_
мл	0,2	0,25	0,3	0,35	0,4	0,45	0,5	0,5	
Изотоническая	1.0	1.05	1.0	1 1 1	1 1	1.05	1.0	1 =	1 5
раствор, мл	1,3	1,25	1,2	1,15	1,1	1,05	1,0	1,5	1,5
Гемолитическая	1.0	1.0	1.0	1.0	1.0	1.0	1 0	0.5	1.0
система, мл	1,0	1,0	1,0	1,0	1,0	1,0	1,0	0,5	1,0
	Инк	убаци	я при	37°C	в теч	ение 5	80 мин	нут	
Результат									
(гемолиз +/-):									
ВЫВОДЫ: титр н	компле	емента	L	;	рабоча	ая доза	а комп	лемента	МЛ.

РЕАКЦИЯ СВЯЗЫВАНИЯ КОМПЛЕМЕНТА С ИССЛЕДУЕМОЙ СЫВОРОТКОЙ

Ингј	редиенты	Опыт 1	Контроль сыворотки 2	Контроль антигена 3		
Исследуемая сыворо	гка в разведении 1:25, мл	0,5	0,5	_		
Антиген (диагностик	ум), мл	0,5	_	0,5		
Комплемент в рабоче	ей дозе, мл	0,5	0,5	0,5		
Изотонический растн	вор, мл	_	0,5	0,5		
Ин	икубация при 37°С в тече	ение 45-6	0 минут			
Гемолитическая сист	Гемолитическая система, мл 1,0 1,0					
Ин	Инкубация при 37°С в течение 45-60 минут					
Результат	Сыворотка больного					
(гемолиз +/-):	Сыворотка здорового					
	отрицательная с сыворот Отрицательная с сыворот			·		

Условные обозначения:

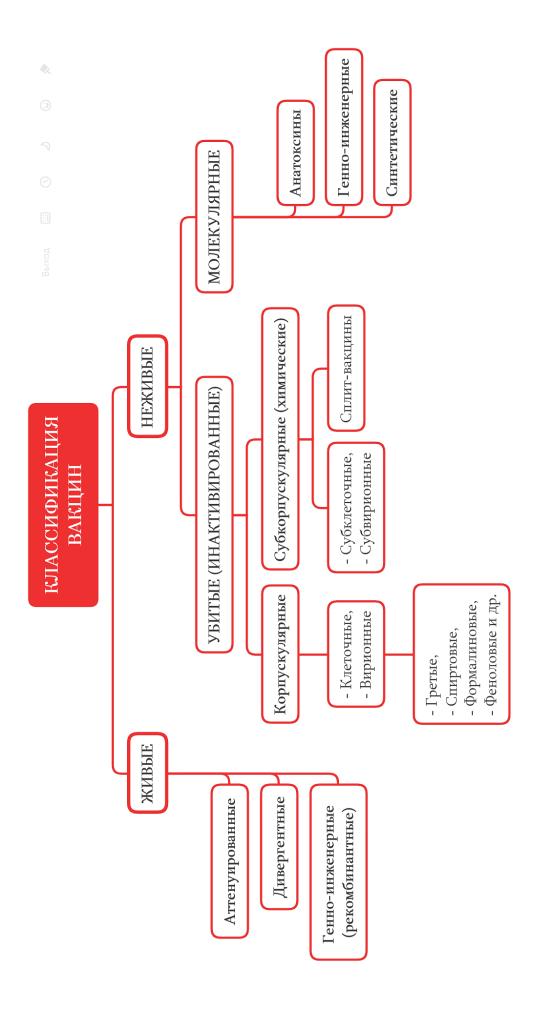
«+» – наличие гемолиза (РСК «-»), «-» – отсутствие гемолиза (РСК «+»)

СХЕМА ПОСТАНОВКИ ИФА

17	Опыт «Положительный контроль»							«Отриц. контроль»	
Ингредиенты	A1	B1	C1	D1	E 1	F1	G1	H1	
	A2	B2	C2	D2	E2	F2	G2	H2	
1. Буфер А (мл)	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	
Инкубация при комнатной температуре 10 мин.									
2. Исследуемый антиген (мл)	0,1*						_		
3. Стандартный антиген 100 мкг/мл (мл)	_	0,1	0,1	0,1	0,1	0,1	0,1 слить	_	
4. Отрицательный контроль (мл)	_							0,1	
	бация п	pu 37	Свт	ечени	е 20 л	ин., с	тмывка		
		•	_	_			слить 0,1 л		
(во всех лун								-	
5. Конъюгат (мл)	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	
Инкубация при 37°C в течение 20 мин., отмывка									
6. Субстрат (мл)	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	
Инкуб	бация пр	ри кол	инат	ной т	емпер	ратур	е 20 мин.		
7. «Стоп-реагент» (50%H ₂ SO ₄) (мл)	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	
1 2 3 4 5 6 7 8 9 10 11 12 A									
Фотометр вертикального сканирования измеряет оптическую плотность содержимого лунок планшета.									
Результаты (+/—):									
ВЫВОДЫ: ИФА положительная/отрицательная									
Концентрация исследуемого антигена мкг/мл									

(Подпись преподавателя)

мибп для профилактики и лечения


СХЕМА РЕАКЦИИ ФЛОККУЛЯЦИИ ДЛЯ ТИТРОВАНИЯ АНАТОКСИНА

Ингредиенты	1	2	3	4	5			
Дифтерийный анатоксин, мл	2,0	2,0	2,0	2,0	2,0			
Противодифтерийная антитоксическая сыворотка, мл (400 МЕ/мл)	0,16	0,18	0,2	0,22	0,24			
Водяная баня 40-45°С в течение 45 минут								
Результаты (инициальная флоккуляция): Расчёт:								
ВЫВОДЫ: Реакция флоккуляции положительная/отрицательная (нужное подчеркнуть). Титр дифтерийного анатоксинаLf/мл.								

СХЕМА КОНТРОЛЯ ДИФТЕРИЙНОГО АНАТОКСИНА

Название анатоксина	Тип вакцины	Внешний вид (цвет, прозрачность)	Стерильность	Титр (из таблицы выше)					
ВЫВОД:									
Дифтерийный анатоксин соответствует / не соответствует стандарту (нужное									
подчеркнуть) по показателям									

(Подпись	преподавателя)

ВАКЦИНЫ

Живые

I. <u>Живые дивергентные</u>

Пример: Вакцина оспенная живая.

II. <u>Живые аттенуированные</u>

Примеры: БЦЖ, БЦЖ-м; Вакцина бруцеллёзная живая; Сибиреязвенная вакцина живая; Вакцина чумная живая; Туляремийная вакцина живая; Вакцина желтой лихорадки живая сухая; Вакцина живая Ку-лихорадки; Полиомиелитная пероральная живая вакцина (ОПВ); Вакцина против краснухи культуральная живая; Живая коревая вакцина; Вакцина против ветряной оспы живая аттенуированная.

Ассоциированная: Вакцина с живым вакцинным штаммом – Вакцина Е сыпнотифозная комбинированная живая (ЖКСВ-Е).

III. <u>Рекомбинантные (векторные) вакцины</u>

Пример: Комбинированная векторная вакцина для профилактики новой коронавирусной инфекции.

Инактивированные

І. Корпускулярные:

• Цельноклеточные

Пример: Холерная инактивированная вакцина; лептоспирозная концентрированная инактивированная жидкая вакцина; полиомиелитная пероральная инактивированная вакцина (ИПВ).

• Цельновирионные

Пример: Вакцина антирабическая культуральная концентрированная очищенная инактивированная; Вакцина клещевого энцефалита; Герпетическая вакцина инактивированная.

II. <u>Химические</u>

• Субклеточные

Примеры: Вакцина брюшнотифозная Vi-полисахаридная; Вакцина пневмококковая полисахаридная конъюгированная адсорбированная; Вакцина менингококковая полисахаридная; Вакцина конъюгированная для профилактики инфекции, вызываемой *Haemophilus influenzae*.

• Субвирионные

Пример: Вакцина гриппозная полимер-субъединичная.

Молекулярные

I. <u>Биосинтетические природные</u> (анатоксины)

Примеры: АД-м, АС, АДС, АДС-м, Тетраанатоксин, Анатоксин стафилококковый очищенный адсорбированный.

Комбинированные (с анатоксином): АКДС.

Ассоциированные (с анатоксином): Вакцина холерная бивалентная химическая.

II. Генно-инженерные

Пример: Вакцина против ВГВ рекомбинантная дрожжевая жидкая.

III. Синтетические

Пример: Вакцина на основе пептидных АГ для профилактики COVID-19.

Противогриппозные:

- І поколение: Гриппозная вакцина живая аллантоисная для интраназального применения; убитая цельновирионная гриппозная вакцина.
- ІІ поколение: Вакцина полимер-субъединичная гриппозная.
- III поколение: Инактивированная сплит-вакцина гриппозная.
- **IV поколение:** Рекомбинантная противогриппозная вакцина (в РФ не используется).
- V поколение: Поливалентная виросомальная инактивированная вакцина против гриппа.

КОМБИНИРОВАННЫЕ

Примеры: Вакцина для профилактики дифтерии и столбняка адсорбированная, коклюша ацеллюлярная, полиомиелита инактивированная, инфекций, вызываемых *Haemophilus influenza* тип b, конъюгированная («Пентаксим»); Адсорбированная бесклеточная коклюшно-дифтерийно-столбнячная вакцина,

Адсороированная оесклеточная коклюшно-дифтериино-столонячная вакцина, инактивированная полиомиелитная вакцина, рекомбинантная вакцина против вируса гепатита В, вакцина для профилактики *Haemophilus influenzae* тип b («Инфанрикс»).

БАКТЕРИОФАГИ

Примеры: Поливалентный брюшнотифозный бактериофаг; Бактериофаг сальмонеллёзный групп A, B, C, D, E; Бактериофаг дизентерийный поливалентный.

ИММУНОМОДУЛЯТОРЫ

Экзогенные – сочетают в себе свойства вакцинных и иммуномодулирующих средств.

Примеры: Рибомунил; ИРС-19; Бронхомунал.

Эндогенные

I. <u>Колониестимулирующие факторы</u>

Пример: Молграмостин.

II. Интерфероны

Пример: Интерферон Альфа-2b лейкоцитарный или рекомбинантный.

III. <u>Интерлейкины</u>

Пример: Интерлейкин-2.

IV. Другие системные иммуномодуляторы

• Препараты тимуса

Примеры: Тактивин; Тимопоэтин; Миелопид (В-активин).

ВАКЦИНЫ

Инактивированные

Примеры: Гонококковая инактивированная вакцина; Стафилококковая инактивированная вакцина лечебная; Бруцеллёзная лечебная вакцина жидкая.

ИМУННЫЕ СЫВОРОТОЧНЫЕ ПРЕПАРАТЫ

I. <u>Гетерологические:</u>

• Иммуноглобулины и сыворотки:

А. Противобактериальные

Пример: Противочумная сыворотка.

Б. Противовирусные

Пример: Иммуноглобулин антирабический лошадиный.

В. Антитоксические

Примеры: Противогангренозная поливалентная; Противоботулиническая A, B, E; Противостолбнячная; Противодифтерийная.

II. Гомологические:

• Иммуноглобулины:

А. Ненаправленного действия:

Пример: Иммуноглобулин человека нормальный.

Б. Направленного действия

Примеры: Противостафилококковый иммуноглобулин; Противогриппозный иммуноглобулин; Иммуноглобулин против клещевого энцефалита.

• Сыворотки

Примеры: Сыворотка против клещевого энцефалита; Противогриппозная сыворотка;

• Гипериммунная плазма

Примеры: Противокоронавирусная плазма; Противогриппозная плазма; Антистафилококковая плазма; Антисинегнойная плазма.

БАКТЕРИОФАГИ

Примеры: Стафилококковый, Стрептококковый, Синегнойный, Клебсиеллёзный, Колибактериофаг, Протейный, Пиобактериофаг, Бактериофаг интести.

пробиотики

Примеры: Лактобактерин; Ацилакт; Бифидумбактерин; Колибактерин; Бификол.

КУРС «ЧАСТНАЯ МИКРОБИОЛОГИЯ»

РАЗДЕЛ: «ЧАСТНАЯ БАКТЕРИОЛОГИЯ»

БАКТЕРИИ – ВОЗБУДИТЕЛИ КИШЕЧНЫХ ИНФЕКЦИЙ

КЛАССИФИКАЦИЯ САЛЬМОНЕЛЛ (СХЕМА КАУФМАНА-УАЙТА)

Concentrate concent next	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Н-антиген		
Серогруппа, серовар, вид	О-антиген	Фаза 1	Фаза 2	
Серогруппа 2 (А)				
S. Paratyphi A	<u>1</u> , 2, 12	a	(1, 5)	
Серогруппа 4 (В)				
• S. Paratyphi B (S. Schottmuelleri)	<u>1,</u> 4(5), 12	b	1, 2	
• S. Derby	$\frac{1}{1}$, $4(5)$, 12	f, g	1, 2	
• S. Agona	1, 4(5), 12	f, g, s	(1, 2)	
S. Typhimurium	<u>1</u> , 4(5), 12	i	1, 2	
Серогруппа 6,7 (С1)				
• S. Paratyphi C	6, 7, (Vi)	c	1, 5	
• S. Choleraesuis	6, 7	c	1, 5	
• S. Infantis	6, 7, <u>14</u>	r	1,5	
Серогруппа 9 (D1)				
S. Typhi	9, 12 (Vi)	d	_	
S. Enteritidis	1, 9, 12	g, m	_	
S. Dublin	<u>1,</u> 9, 12 (Vi)	g, p	_	
S. Moscow	9, 12	g, q	_	
S. Panama	<u>1,</u> 9, 12	l, v	1,5	
Серогруппа 3, 10 (Е1)				
S. London	3, 10 (15)	l, v	1, 6	

Антигены в скобках - антигены, которые редко экспрессируются данным сероваром.

О-РПГА С ПАРНЫМИ СЫВОРОТКАМИ ДЛЯ СЕРОЛОГИЧЕСКОЙ ДИАГНОСТИКИ БРЮШНОГО ТИФА

Результаты	1:10	1:20	1:40	1:80	1:160	1:320	1:640	Контроль
Сыворотка 1								
Сыворотка 2								
ВЫВОДЫ: РПГА положительная /отрицательная.								
Титр антител к О-антигену в первой сыворотке								
Титр антител к О-антигену во второй сыворотке								
к	ратное	увелич	чение	титра	антител	I ВО	второй	сыворотке
подтверждает/не подтверждает диагноз								

Vi-РПГА С ПАРНЫМИ СЫВОРОТКАМИ ДЛЯ СЕРОЛОГИЧЕСКОЙ ДИАГНОСТИКИ ХРОНИЧЕСКОГО БРЮШНОТИФОЗНОГО НОСИТЕЛЬСТВА

Результаты	1:10	1:20	1:40	1:80	1:160	1:320	1:640	Контроль	
Сыворотка пациента									
ВЫВОДЫ: РПГА положительная /отрицательная.									
Титр антител к Vi-антигену									
HOHERONIA HOMENO HOMENO OF HIS BUILD									

БАКТЕРИОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ КРОВИ БОЛЬНОГО ПРИ БРЮШНОМ ТИФЕ (ПАРАТИФАХ)

Материал для исследования – кровь больного.

<u>Цель исследования</u> – выделение и идентификация возбудителя.

Предварительный клинический диагноз – брюшной тиф (?).

День	Ход исследования	Результат исследования/ промежуточные выводы			
1	Посев крови больного в соотношении 1:10 на 10% желчный бульон для накопления.				
2					
3					
4					
ЗАКЛЬ	ЗАКЛЮЧЕНИЕ И ВЫВОДЫ:				

БАКТЕРИОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ РВОТНЫХ МАСС БОЛЬНОГО ПРИ САЛЬМОНЕЛЛЕЗЕ

Материал для исследования – рвотные массы больного.

<u>Цель исследования</u> – выделение и идентификация возбудителя.

Предварительный клинический диагноз – сальмонеллез (?)

День	Ход исследования	Результат исследования/ промежуточные выводы
1		
2		
3		
ЗАКЛЬ	ОЧЕНИЕ И ВЫВОДЫ:	

Окраска:	Окраска:
Окраска:	Окраска:

БАКТЕРИИ – ВОЗБУДИТЕЛИ КИШЕЧНЫХ ИНФЕКЦИЙ (ПРОДОЛЖЕНИЕ)

БАКТЕРИОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ ФЕКАЛИЙ (КОПРОКУЛЬТУРЫ) БОЛЬНОГО ПРИ КОЛИЭНТЕРИТЕ

Материал для исследования - фекалии больного.

<u>Цель исследования</u> – выделение и идентификация возбудителя.

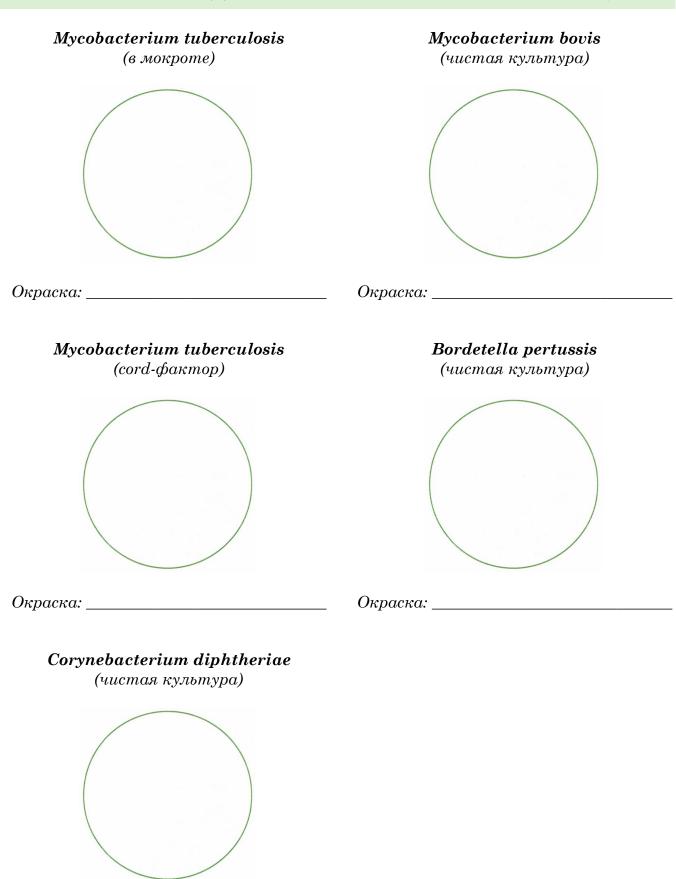
Предварительный клинический диагноз – колиэнтерит (?)

День	Ход исследования	Результат исследования/ промежуточные выводы
1		
2		
3		
ЗАКЛЬ	ОЧЕНИЕ И ВЫВОДЫ:	

БАКТЕРИОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ ФЕКАЛИЙ (КОПРОКУЛЬТУРЫ) БОЛЬНОГО ПРИ ШИГЕЛЛЕЗЕ (БАКТЕРИАЛЬНОЙ ДИЗЕНТЕРИИ)

Материал для исследования – фекалии больного.

<u>Цель исследования</u> – выделение и идентификация возбудителя.


<u>Предварительный клинический диагноз</u> – дизентерия (?)

День	Ход исследования	Результат исследования/ промежуточные выводы
1		
2		
3		
ЗАКЛЬ	ОЧЕНИЕ И ВЫВОДЫ:	

БИОХИМИЧЕСКИЕ СВОЙСТВА ЭНТЕРОБАКТЕРИЙ

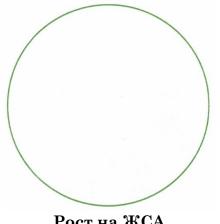
Название бактерий	КИЕ СВОИСТВА ЭНТЕ Среда Клиглера	Цитрат Симмонса	Среда с лизином
Незасеянные пробирки			
Salmonella sp.			
Shigella sp.			
Escherichia sp.			

БАКТЕРИИ – ВОЗБУДИТЕЛИ РЕСПИРАТОРНЫХ ИНФЕКЦИЙ

(Подпись преподавателя)

Окраска: _____

ПАТОГЕННЫЕ КОККИ (СТАФИЛОКОККИ, СТРЕПТОКОККИ, НЕЙССЕРИИ)


$Streptococcus\ pneumoniae$ Streptococcus pyogenes $Staphylococcus\ aureus$ (в органах) (чистая культура) (в гное) Окраска: Окраска: Окраска: $Neisseria\ gonorrhoeae$ Neisseria meningitidis (в гное) (чистая культура) Окраска: _ Окраска: _____ ФАКТОРЫ ВИРУЛЕНТНОСТИ СТАФИЛОКОККОВ

Плазмокоагулаза

5% кровяном агаре

Рост на ЖСА (лецитовителлаза)

ИССЛЕДОВАНИЯ ГНОЯ

Материал для исследования – отделяемое по дренажу.

<u>Цель исследования</u> – выделение и идентификация возбудителя.

Предварительный клинический диагноз – послеоперационное нагноение.

День	Ход исследования	Результат исследования/ промежуточные выводы
1	 Приготовление мазка из исследуемого материала и окраска по Граму (бактериоскопическое исследование). Посев исследуемого материала на желточно-солевой и 5% кровяной агар. 	
2	 Микроскопия колоний (окраска по Граму). Пересев на скошенный МПА для накопления чистой культуры. 	
3	1) Приготовление мазка и окраска фуксином (для определения степени чистоты выделенной культуры). 2) Посев на цитратную кроличью плазму и среду Гисса с маннитом (под вазелиновым маслом для создания анаэробных условий). 3) Фаготипирование культуры типовыми стафилококковыми бактериофагами 4) Определение чувствительности бактерий к антибиотикам.	 Доксициклин мм мм
ЗАКЛК	ОЧЕНИЕ И ВЫВОДЫ:	

РАЗДЕЛ: «КЛИНИЧЕСКАЯ МИКРОБИОЛОГИЯ»

БАКТЕРИОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ МОКРОТЫ

Материал для исследования – мокрота.

<u>Цель исследования</u> – выделение и идентификация возбудителя.

Предварительный клинический диагноз – пневмония (?).

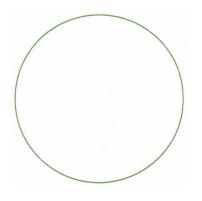
День	Ход исследования				Результат исследования						
	1) Приготовление серийных р			разведений мокроты в стерильном физ. растворе:							
		Физ. р-р, мл	9,0		9,9	9,9	9,9				
		Материал, мл	1,0	_	0,1	→ 0,1 —	→ 0,1				
1			10-1	0,1	мл 0,1	10-5	1 мл				
	мокрот на ЖО агар, и	ев газоном по ты из разведен СА и 5% кроз вазведения вяной агар.	ия 10 ⁻⁵ овяной								
2	(окрас	кроскопия коло ка по Граму). ресев на скош									
3	•	еление ительности баг биотикам	ктерий	• - • - • -							
ЗАКЛК	ОЧЕНИ	IE: Из мокроті	ы больн	ого ві	ыделены бакт	герии вида					
в кол	ичестве		КОЕ/м	IJ,	что подтв	ерждает/не	подтверж	дает			
этиолог	ическук	роль выделен	ных ба	ктери	ій в развитии	заболевания	ſ .				
Выделе	нные ба	ктерии чувств	ительнь	ык				,			
устойчи	вы к							·			

БАКТЕРИОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ МОЧИ

Материал для исследования – моча.

<u>Цель исследования</u> – выделение и идентификация возбудителя.

Предварительный клинический диагноз – острый пиелонефрит (?)


День	Ход исследования	Результат исследования
1	Посев мочи по Голду.	
2	 Микроскопия колоний (окраска по Граму). Пересев на скошенный МПА. 	
3	Определение чувствительности бактерий к антибиотикам.	 - MM
		елены бактерии.
		л, что подтверждает/не подтверждает рий в развитии заболевания. Выделенные
бактери		,
устойчи	вы к	

ОПРЕДЕЛЕНИЕ СТЕПЕНИ БАКТЕРИУРИИ

Количе	ство колоний	Среднее кол-во		
Сектор А	Сектор 1	Сектор 2	Сектор 3	бактерий, КОЕ/мл
				иРОМ
1-6				<1000
8-20				3 000
20-30				5 000
30-60	_		_	10 000
70-80			_	50 000
100-150	6-10			100 000
>200	20-30		_	500 000
>200	40-60			1 000 000 (106)
>200	100-140	10-20	_	5 000 000 (5x10 ⁶)
>200	>200	30-40		10 000 000 (107)
>200	>200	60-80	1-8	более 100 000 000 (108)

$Pseudomonas\ aeruginos a$

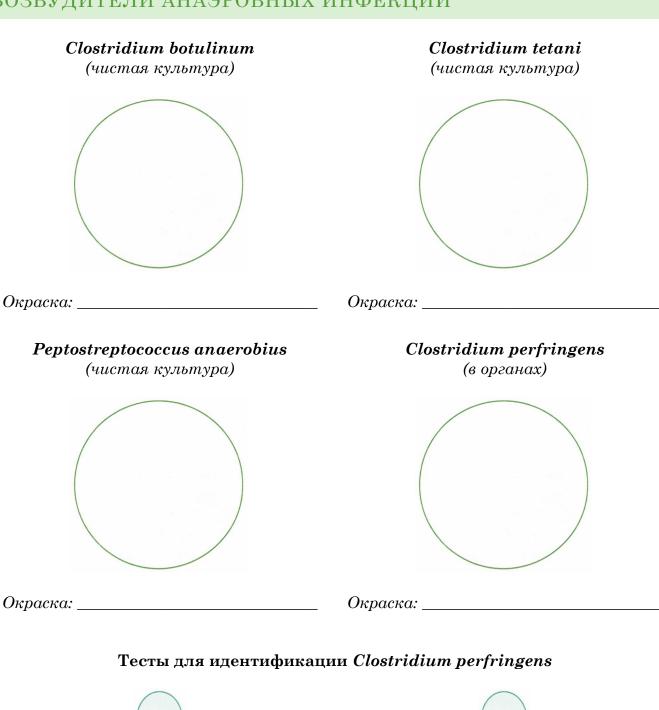
(чистая культура)

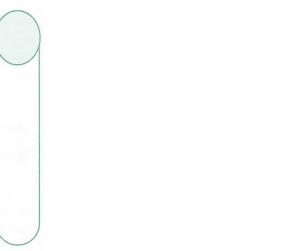
Окраска: _____

СБОР, ХРАНЕНИЕ И ДОСТАВКА ОБРАЗЦОВ БИОЛОГИЧЕСКОГО МАТЕРИАЛА ПРИ ПОДОЗРЕНИИ НА АНАЭРОБНУЮ ИНФЕКЦИЮ

1) Исследуемый материал:

- Исследуют перитонеальную и синовиальную жидкости, гной из абсцессов и закрытых полостей, материал из глубоких отделов свища, фрагменты костной и мышечной тканей и т.д.
- При наличии клинических признаков анаэробной инфекции **бактериологическое** исследование крови проводят обязательно!
- Не стоит исследовать на анаэробы: мокроту, полученную при откашливании или аспирации через назотрахеальный катетер, материал, полученный при бронхоскопии, мазки с поверхности ран, мочу, полученную при естественном мочеиспускании.


2) Взятие материала:

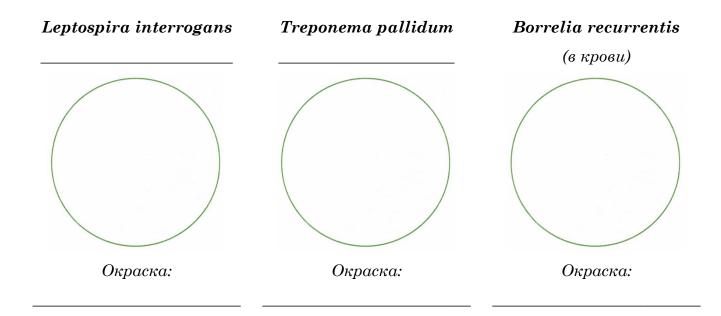

- Должно проводиться при наличии признаков анаэробной инфекции до начала антибиотикотерапии до или во время вскрытия/дренирования очага.
- Необходимо минимизировать контакт образца с кислородом.
- Исследуемый материал необходимо забирать непосредственно из гнойного очага инфекции (не с поверхности кожи!), соблюдая при этом правила асептики, стараясь не контаминировать биоматериал посторонней микрофлорой.
- Кровь для посева берут асептически из области локтевой вены на высоте лихорадки, троекратно, с интервалом 30 минут. Первичный посев крови производят в коммерческие флаконы для гемокультивирования (для анаэробов).
- Взятие большого количества биоматериала повышает вероятность обнаружения облигатных анаэробов.
- Одновременно со взятием биоматериала для бактериологического исследования необходимо проведение микроскопии для ориентировочного диагноза.

3) Хранение и доставка материала:

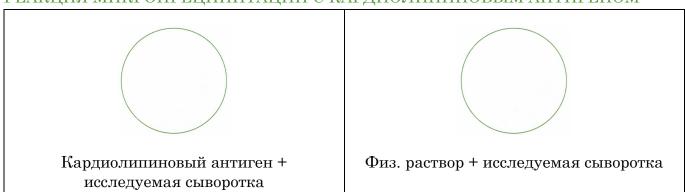
- Хранить и транспортировать взятый биоматериал следует *при комнатной температуре*.
- Исследуемый материал *помещают в анаэробную транспортную среду* (например, тиогликолевую, из которой предварительно удален кислород, а на поверхность среды наслоен стерильный глицерин, или в коммерческие среды для транспортировки).
- В отдельных случаях при отсутствии специальных транспортных сред допускается экстренная транспортировка биоматериала для исследования на анаэробную инфекцию отделяемого, набранного в стерильный шприц, игла которого воткнута в резиновую пробку.
- Максимальное время для транспортировки, от взятия биоматериала до посева на питательные среды и создания бескислородной атмосферы, *не должно превышать 2 часа*. Часто инфекция носит смешанный аэробно-анаэробный характер. Задержка доставки биоматериала более, чем на 2 часа, может привести к вытеснению облигатных анаэробов факультативно-анаэробными бактериями, что приведет к ложноотрицательному результату исследования.
- В случае невозможности доставки в микробиологическую лабораторию **флаконы с** посевами крови хранятся при комнатной температуре не более 24 часов!

возбудители анаэробных инфекций

Рост на среде Вильсона-Блера


Створаживание молока

ОПРЕДЕЛЕНИЕ ТИПА БОТУЛИНИЧЕСКОГО ТОКСИНА С ПОМОШЬЮ РПГА (РОНГА)

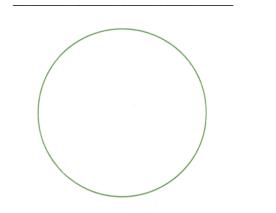

Ингредиенты	1:10	1:20	1:40	1:80	1:160	1:320	1:640	Контроль антигена
Изотонический р-р, мл	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Исследуемый материал (промывные воды желудка, разведение 1:5), мл	0,5	0,5	0,5	0,5	0,5	0,5	0,5 слить	_
Антительный эритроцитарный диагностикум соответствующего серотипа, мл	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Ин	кубац	ия прі	и комн	атной	і темп	ератур)e	
		I	Результ	гат (+/-)):			
С поливалентным диагностикумом ABE								
С диагностикумом А								
С диагностикумом В								
С диагностикумом Е								
ВЫВОДЫ: Реакция пассивной гемагглютинации положительная с								

РАЗДЕЛ: «ЧАСТНАЯ БАКТЕРИОЛОГИЯ (продолжение)»

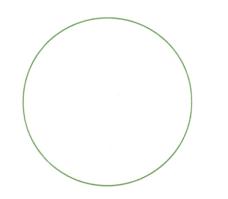
ПАТОГЕННЫЕ СПИРОХЕТЫ

РЕАКЦИЯ МИКРОПРЕЦИПИТАЦИИ С КАРДИОЛИПИНОВЫМ АНТИГЕНОМ

ВЫВОДЫ: Реакция положительная/отрицательная.


РПГА ДЛЯ СЕРОЛОГИЧЕСКОЙ ДИАГНОСТИКИ СИФИЛИСА

Ингредиенты	1	2	3	4	5	6	Контроль антигена
Сыворотка пациента в разведении	1:2	1:4	1:8	1:16	1:32	1:64	-
Эритроцитарный трепонемный диагностикум, мл	0,5	0,5	0,5	0,5	0,5	0,5	1,0
Результаты:							

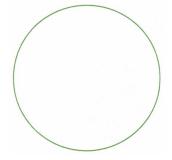

ВЫВОДЫ: РПГА положительная/отрицательная.

Титр антител к бледным трепонемам ______, что **подтверждает/не подтверждает** диагноз сифилиса. Диагностический титр 1:8 – 1:16)

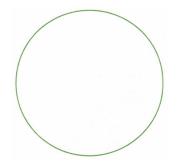
ПАТОГЕННЫЕ ГРИБЫ – ВОЗБУДИТЕЛИ ИНФЕКЦИОННЫХ ЗАБОЛЕВАНИЙ ДЕТЕЙ

Окраска: _____

РАЗДЕЛ: «ЧАСТНАЯ ВИРУСОЛОГИЯ»


ВОЗБУДИТЕЛИ РЕСПИРАТОРНЫХ ВИРУСНЫХ ИНФЕКЦИЙ

РЕАКЦИЯ БИОЛОГИЧЕСКОЙ НЕЙТРАЛИЗАЦИИ (РБН) В КУЛЬТУРЕ КЛЕТОК ДЛЯ ИДЕНТИФИКАЦИИ АДЕНОВИРУСА


Аденовирус	Аденовирус	Аденовирус		К	онтроли:		
+ сыв. 3	+ сыв. 4	+ сыв. 7	Культ. клеток	Вируса	Сыв.3	Сыв.4	Сыв.7
вывод:							

Реакция гемадсорбции ЦПД аденовирусов (внутриядерные включения)

ЦПД вирусов бешенства *(тельца Бабеша-Негри)*

Титр вируса_

РЕАКЦИЯ ГЕМАГГЛЮТИНАЦИИ (РГА) ДЛЯ ИНДИКАЦИИ ВИРУСА ГРИППА В АЛЛАНТОИСНОЙ ЖИДКОСТИ КУРИНОГО ЭМБРИОНА

Ингредиенты	P	азведен	Контроль								
_	1:2	1:4	1:8	1:16	1:32	эритроцитов					
Изотонический р-р	0,5	0,5	0,5	0,5	0,5	0,5					
хлорида натрия, мл	0,0	0,0	0,0	0,5	0,0	0,0					
Аллантоисная											
жидкость											
(вируссодержащий		* [*	*	*						
материал), мл	0,5	0,5	0,5	0,5	0,5 слить						
1% суспензия											
эритроцитов, мл	0,5	0,5	0,5	0,5	$0,\!5$	0,5					
Перемешать, инкуби	Перемешать, инкубировать при комнатной температуре в течение 30-60 мин.										
Результаты:											
ВЫВОДЫ: РГА поло	эжите.	пьная/о	трицаг	пельная	и. В аллантои	сной жидкости					
обнаружен/не обнару	жен ви	рус, обл	адающи	й гемагг	лютинирующеї	й способностью.					

58

РЕЗУЛЬТАТЫ РСК ДЛЯ ИДЕНТИФИКАЦИИ СЕРОТИПА ВИРУСА ГРИППА

	Разведения сыворотки						Контроли				
Результаты:	1:20	1:40	1:80	1:160	1:320	1:640	Эритр.	Компл.	Гем. Системы	C _b IB. A	Сыв. В
Сыворотка против											
вируса гриппа А											
Сыворотка против											
вируса гриппа В											
ВЫВОДЫ: РСК положительная с сывороткой											
следовательно иденти	фицир	ован (сероти	п виру	са гри	ппа		_•			

Условные обозначения: «+» – наличие гемолиза (РСК «–»), «–» – отсутствие гемолиза (РСК «+»).

СХЕМА ПОСТАНОВКИ РТГА

ДЛЯ ИДЕНТИФИКАЦИИ ПОДТИПА ВИРУСА ГРИППА

Разведения	$egin{array}{ c c c c c c c c c c c c c c c c c c c$		5	Контроли						
вируса	1:10	1:20	1:40	1:80	1:160	вируса	сывороток	эритр.		
Изотонический р-р NaCl, мл	_	0,5	0,5	0,5	0,5	0,5	0,5	1,0		
Исследуемый вирус 1:10, мл	0,5	0,5	0,5	0,5	0,5	0,5	_	_		
Первый ряд:										
Сыворотка к вирусу				1		_	0,5	_		
H1N1 1:10, мл	0,5	0,5	0,5	0,5	0,5 слить					
Второй ряд:					(
Сыворотка к вирусу				1		_	$0,\!5$	_		
H3N2 1:10, мл	0,5	0,5	0,5	0,5	0,5 слить					
1% суспензия	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5		
эритроцитов, мл	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
			Pe	зульт	аты:					
С сыв. к вирусу										
гриппа H1N1										
С сыв. к вирусу										
гриппа H3N2										
выводы: РТГА п	оложи	тельн	ая с с	ыворо	гкой к под	типу вир	уса гриппа ₋	до		
ттра										

Условные обозначения: «+» – наличие гемагглютинации (РТГА «-»), «-» – отсутствие гемагглютинации (РТГА «+»).

РЕЗУЛЬТАТЫ РТГА С ПАРНЫМИ СЫВОРОТКАМИ ДЛЯ СЕРОЛОГИЧЕСКОЙ ДИАГНОСТИКИ ГРИППА

		Pa	зведе	ния с	Контроли							
Результаты:	1:10	1:20	1:40	1:80	1:160	1:320	1:640	Bupyca H1N1	Вируса H3N2	Эритроц.	Сыв. 1	C _{biB} . 2
Диагностикум (H1N1)												
Сыв. 1												
Сыв. 2												
Сыв. 1												
Сыв. 2												
ВЫВОДЫ: РТГА положительная с диагностикумом												
	Титр антител в сыворотке 1, в сыворотке 2; кратное нарастание											
1 -	титра антител во второй сыворотке позволяет/не позволяет подтвердить диагноз											
гриппа. Грипп	гриппа. Грипп вызван вирусом											

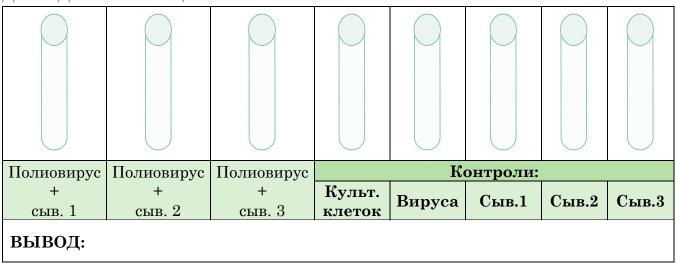
Условные обозначения:

«+» – наличие гемагглютинации (РТГА «-»), «-» – отсутствие гемагглютинации (РТГА «+»).

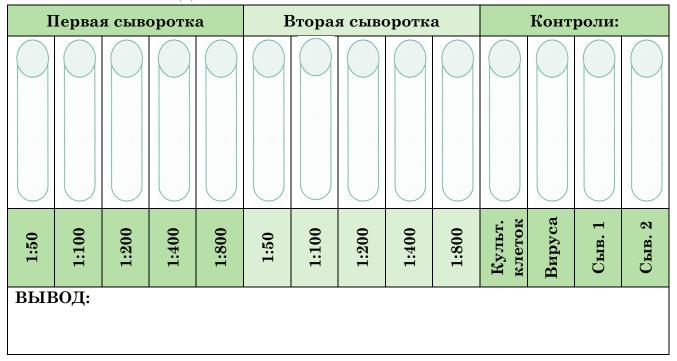
ИССЛЕДОВАНИЯ СМЫВА ИЗ НОСОГЛОТКИ БОЛЬНОГО ПРИ ГРИППЕ

Материал для исследования – смыв из носоглотки.

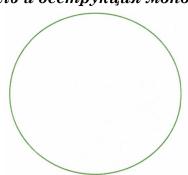
<u>Цель исследования</u> – выделение и идентификация возбудителя.


Предварительный клинический диагноз – грипп (?)

День	Ход исследования	Результат исследования/ промежуточные выводы
1	Заражение исследуемым материалом 7-дневных куриных эмбрионов. Инкубирование при температуре 37°C в течение 48 часов.	
2	 Вскрытие куриных эмбрионов, взятие аллантоисной жидкости стерильным шприцом в асептических условиях. Постановка РГА для индикации вируса. Постановка РСК для определения серотипа вируса гриппа. Постановка РТГА для определения подтипа вируса гриппа. 	
Через	Исследование парных сывороток больного в РТГА.	
	ние и выводы: Из носоглоточного смыв подтип Грипп вызван вирусов ком исследовании парных	м При


4	$(\Pi_0)_{n=0}$	10	реподавателя	,
۱	110011410	$I\iota$	реновашеля	,

ВОЗБУДИТЕЛИ ЭНТЕРОВИРУСНЫХ ИНФЕКЦИЙ И ГЕПАТИТОВ


РЕАКЦИЯ БИОЛОГИЧЕСКОЙ НЕЙТРАЛИЗАЦИИ (РБН) В КУЛЬТУРЕ КЛЕТОК ДЛЯ ИДЕНТИФИКАЦИИ ПОЛИОВИРУСА

РБН В КУЛЬТУРЕ КЛЕТОК С ПАРНЫМИ СЫВОРОТКАМИ ДЛЯ СЕРОЛОГИЧЕСКОЙ ДИАГНОСТИКИ ПОЛИОМИЕЛИТА

ЦПД вирусов_полиомиелита (гибель и деструкция монослоя)

TX	Опыт	-								
Ингредиенты	A1 A2	B1 B2	C1 C2	D1 D2	E1 E2	F1 F2	G1 G2	H1 H2		
1. Буфер А (мл)	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1		
Инкубация при комнатной температуре 10 мин.										
2. Сыворотка больного (мл)	0,1*						_	_		
3. Стандартный антиген 100 мкг/мл (мл)	_	0,1	0,1	0,1	0,1	0,1	0,1 слить	_		
4. Отрицательный контроль (мл)			_		_	_	——————————————————————————————————————	0,1		
Инкубация при 37°С в течение 20 мин., отмывка										
*Добавить 0,1 мл, аккуратно перемешать и слить 0,1 мл (во всех лунках должен быть одинаковый объем жидкостей)										
(во всех лун 5. Конъюгат (мл)										
5. Конъюгат (мл) 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 Инкубация при 37°C в течение 20 мин., отмывка										
6. Субстрат (мл)	0,1	0.1	0,1	0,1	0,1	0,1	0.1	0,1		
							е 20 мин.	0,1		
7. «Стоп-реагент» (50%H ₂ SO ₄) (мл)	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05		
Фотометр вертикального сканирования измеряет оптическую плотность содержимого дунок планшета.										
	T		 		I	 				
Результаты (+/—):										

(Подпись преподавателя)

Концентрация HBs антигена в исследуемой сыворотке _____ мкг/мл