Aquatic toxicity and mode of action of CdS and ZnS nanoparticles in four microalgae species
|
01.07.2020 |
Pikula K.
Mintcheva N.
Kulinich S.A.
Zakharenko A.
Markina Z.
Chaika V.
Orlova T.
Mezhuev Y.
Kokkinakis E.
Tsatsakis A.
Golokhvast K.
|
Environmental Research |
10.1016/j.envres.2020.109513 |
0 |
Ссылка
© 2020 Elsevier Inc. This study reports the differences in toxic action between cadmium sulfide (CdS) and zinc sulfide (ZnS) nanoparticles (NPs) prepared by recently developed xanthate-mediated method. The aquatic toxicity of the synthesized NPs on four marine microalgae species was explored. Growth rate, esterase activity, membrane potential, and morphological changes of microalgae cells were evaluated using flow cytometry and optical microscopy. CdS and ZnS NPs demonstrated similar level of general toxicity and growth-rate inhibition to all used microalgae species, except the red algae P. purpureum. More specifically, CdS NPs caused higher inhibition of growth rate for C. muelleri and P. purpureum, while ZnS NPs were more toxic for A. ussuriensis and H. akashiwo species. Our findings suggest that the sensitivity of different microalgae species to CdS and ZnS NPs depends on the chemical composition of NPs and their ability to interact with the components of microalgal cell-wall. The red microalga was highly resistant to ZnS NPs most likely due to the presence of phycoerythrin proteins in the outer membrane bound Zn2+ cations defending their cells from further toxic influence. The treatment with CdS NPs caused morphological changes and biochemical disorder in all tested microalgae species. The toxicity of CdS NPs is based on their higher photoactivity under visible light irradiation and lower dissociation in water, which allows them to generate more reactive oxygen species and create a higher risk of oxidative stress to aquatic organisms. The results of this study contribute to our understanding of the parameters affecting the aquatic toxicity of semiconductor NPs and provide a basis for further investigations.
Читать
тезис
|
Aquatic toxicity and mode of action of CdS and ZnS nanoparticles in four microalgae species
|
01.07.2020 |
Pikula K.
Mintcheva N.
Kulinich S.A.
Zakharenko A.
Markina Z.
Chaika V.
Orlova T.
Mezhuev Y.
Kokkinakis E.
Tsatsakis A.
Golokhvast K.
|
Environmental Research |
10.1016/j.envres.2020.109513 |
0 |
Ссылка
© 2020 Elsevier Inc. This study reports the differences in toxic action between cadmium sulfide (CdS) and zinc sulfide (ZnS) nanoparticles (NPs) prepared by recently developed xanthate-mediated method. The aquatic toxicity of the synthesized NPs on four marine microalgae species was explored. Growth rate, esterase activity, membrane potential, and morphological changes of microalgae cells were evaluated using flow cytometry and optical microscopy. CdS and ZnS NPs demonstrated similar level of general toxicity and growth-rate inhibition to all used microalgae species, except the red algae P. purpureum. More specifically, CdS NPs caused higher inhibition of growth rate for C. muelleri and P. purpureum, while ZnS NPs were more toxic for A. ussuriensis and H. akashiwo species. Our findings suggest that the sensitivity of different microalgae species to CdS and ZnS NPs depends on the chemical composition of NPs and their ability to interact with the components of microalgal cell-wall. The red microalga was highly resistant to ZnS NPs most likely due to the presence of phycoerythrin proteins in the outer membrane bound Zn2+ cations defending their cells from further toxic influence. The treatment with CdS NPs caused morphological changes and biochemical disorder in all tested microalgae species. The toxicity of CdS NPs is based on their higher photoactivity under visible light irradiation and lower dissociation in water, which allows them to generate more reactive oxygen species and create a higher risk of oxidative stress to aquatic organisms. The results of this study contribute to our understanding of the parameters affecting the aquatic toxicity of semiconductor NPs and provide a basis for further investigations.
Читать
тезис
|
Toxicity assessment of particulate matter emitted from different types of vehicles on marine microalgae
|
01.12.2019 |
Pikula K.
Chernyshev V.
Zakharenko A.
Chaika V.
Waissi G.
Hai L.
Hien T.
Tsatsakis A.
Golokhvast K.
|
Environmental Research |
10.1016/j.envres.2019.108785 |
0 |
Ссылка
© 2019 Elsevier Inc. Air pollution caused by vehicle emissions remains a serious environmental threat in urban areas. Sedimentation of atmospheric aerosols, surface wash, drainage water, and urbane wastewater can bring vehicle particle emissions into the aquatic environment. However, the level of toxicity and mode of toxic action for this kind of particles are not fully understood. Here we explored the aquatic toxic effects of particulate matter emitted from different types of vehicles on marine microalgae Porphyridium purpureum and Heterosigma akashiwo. We used flow cytometry to evaluate growth rate inhibition, changes in the level of esterase activity, changes in membrane potential and size changes of microalgae cells under the influence of particulate matter emitted by motorcycles, cars and specialized vehicles with different types of engines and powered by different types of fuel. Both microalgae species were highly influenced by the particles emitted by diesel-powered vehicles. These particle samples had the highest impact on survival, esterase activity, and membrane potential of microalgae and caused the most significant increase in microalgae cell size compared to the particles produced by gasoline-powered vehicles. The results of the algae-bioassay strongly correlate with the data of laser granulometry analyses, which indicate that the most toxic samples had a significantly higher percentage of particles in the size range less than 1 μm. Visual observation with an optical microscope showed intensive agglomeration of the particles emitted by diesel-powered vehicles with microalgae cells. Moreover, within the scope of this research, we did not observe the direct influence of metal content in the particles to the level of their aquatic toxicity, and we can conclude that physical damage is the most probable mechanism of toxicity for vehicle emitted particles.
Читать
тезис
|
Dependence of welding fume particle toxicity on electrode type and current intensity assessed by microalgae growth inhibition test
|
01.12.2019 |
Kirichenko K.
Zakharenko A.
Pikula K.
Chaika V.
Markina Z.
Orlova T.
Medvedev S.
Waissi G.
Kholodov A.
Tsatsakis A.
Golokhvast K.
|
Environmental Research |
10.1016/j.envres.2019.108818 |
0 |
Ссылка
© 2019 Elsevier Inc. Welding fumes are a major source of metal oxide particles, ozone, carbon monoxide, carbon dioxide, nitrogen oxides, and many other toxic substances. Hazardous properties and the level of toxicity of welding fumes depend mostly on the welding electrode type and the welding regime parameters. The specific objective of this study was to evaluate the aquatic toxicity of metal welding fume particles in vivo on microalga Heterosigma akashiwo. The quantity and size of particles were measured by flow cytometry using a scattering laser light with a wavelength of 405 nm. The number of microalgae cells after 72 h and 7 days exposition with welding fume particle suspensions was evaluated by flow cytometry. Morphological changes of the microalga were observed by optical microscopy. The toxic effect was demonstrated as a significant reduction of cell density after exposure of microalgae to welding fume particles. The greatest impact on the growth of microalga was caused by particles with high rutile content. It was shown that the adverse effect of metal oxide particles depends more on the chemical composition of particles in welding fume while the number and dispersity of particles had no noticeable toxic influence on microalgae. The findings of this research confirm the fact that the toxicity of welding fume particles can be significantly reduced by using rutile-cellulose coated electrodes.
Читать
тезис
|