Год публикации:
Все года
2018
2019
2020
Название |
Дата публикации |
Коллектив авторов |
Журнал |
DOI |
Индекс цитирования |
Ссылка на источник |
First detection of tick-borne encephalitis virus in Ixodes ricinus ticks and their rodent hosts in Moscow, Russia
|
01.10.2019 |
Makenov M.
Karan L.
Shashina N.
Akhmetshina M.
Zhurenkova O.
Kholodilov I.
Karganova G.
Smirnova N.
Grigoreva Y.
Yankovskaya Y.
Fyodorova M.
|
Ticks and Tick-borne Diseases |
10.1016/j.ttbdis.2019.101265 |
0 |
Ссылка
© 2019 Elsevier GmbH Here, we report the first confirmed autochthonous tick-borne encephalitis case diagnosed in Moscow in 2016 and describe the detection of tick-borne encephalitis virus (TBEV) in ticks and small mammals in a Moscow park. The paper includes data from two patients who were bitten by TBEV-infected ticks in Moscow city; one of these cases led to the development of the meningeal form of TBE. Both TBEV-infected ticks attacked patients in the same area. We collected ticks and trapped small mammals in this area in 2017. All samples were screened for the presence of pathogens causing tick-borne diseases by PCR. The TBEV-positive ticks and small mammals’ tissue samples were subjected to virus isolation. The sequencing of the complete polyprotein gene of the positive samples was performed. A total of 227 questing ticks were collected. TBEV was detected in five specimens of Ixodes ricinus. We trapped 44 small mammals, mainly bank voles (Myodes glareolus) and pygmy field mice (Apodemus uralensis). Two samples of brain tissue from bank voles yielded a positive signal in RT-PCR for TBEV. We obtained six virus isolates from the ticks and brain tissue of a bank vole. Complete genome sequencing showed that the obtained isolates belong to the European subtype and have low diversity with sequence identities as high as 99.9%. GPS tracking showed that the maximum distance between the exact locations where the TBEV-positive ticks were collected was 185 m. We assume that the forest park had been free of TBEV and that the virus was recently introduced.
Читать
тезис
|
Identification of surface epitopes associated with protection against highly immune-evasive VlsE-expressing Lyme disease spirochetes
|
01.08.2018 |
Batool M.
Caoili S.
Dangott L.
Gerasimov E.
Ionov Y.
Piontkivska H.
Zelikovsky A.
Waghela S.
Rogovskyy A.
|
Infection and Immunity |
|
3 |
Ссылка
© 2018 American Society for Microbiology. The tick-borne pathogen Borrelia burgdorferi is responsible for approximately 300,000 Lyme disease (LD) cases per year in the United States. Recent increases in the number of LD cases, in addition to the spread of the tick vector and a lack of a vaccine, highlight an urgent need for designing and developing an efficacious LD vaccine. Identification of protective epitopes that could be used to develop a second-generation (subunit) vaccine is therefore imperative. Despite the antigenicity of several lipoproteins and integral outer membrane proteins (OMPs) on the B. burgdorferi surface, the spirochetes successfully evade antibodies primarily due to the VlsE-mediated antigenic variation. VlsE is thought to sterically block antibody access to protective epitopes of B. burgdorferi. However, it is highly unlikely that VlsE shields the entire surface epitome. Thus, identification of subdominant epitope targets that induce protection when they are made dominant is necessary to generate an efficacious vaccine. Toward the identification, we repeatedly immunized immunocompetent mice with live-attenuated VlsE-deleted B. burgdorferi and then challenged the animals with the VlsE-expressing (host-adapted) wild type. Passive immunization and Western blotting data suggested that the protection of 50% of repeatedly immunized animals against the highly immune-evasive B. burgdorferi was antibody mediated. Comparison of serum antibody repertoires identified in protected and nonprotected animals permitted the identification of several putative epitopes significantly associated with the protection. Most linear putative epitopes were conserved between the main pathogenic Borrelia genospecies and found within known subdominant regions of OMPs. Currently, we are performing immunization studies to test whether the identified protection-associated epitopes are protective for mice.
Читать
тезис
|